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Abstract

Brain age is becoming a widely applied imaging-based biomarker of neural aging and potential

proxy for brain integrity and health. We estimated multimodal and modality-specific brain

age in the Whitehall II MRI cohort using machine learning and imaging-derived measures of

gray matter morphology, diffusion-based white matter microstructure, and resting state func-

tional connectivity. Ten-fold cross validation yielded multimodal and modality-specific brain

age estimates for each participant, and additional predictions based on a separate training

sample was included for comparison. The results showed equivalent age prediction accuracy

between the multimodal model and the gray and white matter models (R2 of 0.34, 0.31, and

0.31, respectively), while the functional connectivity model showed a lower prediction accu-

racy (R2 of 0.01). Cardiovascular risk factors, including high blood pressure, alcohol intake,

and stroke risk score, were each associated with more apparent brain aging, with consistent

associations across modalities.

Keywords: Multimodal MRI, brain-age prediction, machine learning, biomedical factors

∗correspondence: ann-marie.delange@psych.ox.ac.uk

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.28.923094doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923094
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

In older age, the human brain undergoes structural changes including reductions in brain

volume, cortical thinning, and decline in white-matter microstructure [1], and large-scale

resting-state networks become less segregated [2, 3]. Aging-related changes in brain struc-

ture and functional connectivity are associated with decreased cognitive performance in

domains including memory and processing speed [2, 4, 5], and comprise an increased risk

for neurodegenerative disorders such as dementia [6]. Although the senescent deteriora-

tion of the brain is well-known, older populations are characterised by substantial variation

in neurobiological aging trajectories [1], and recent neuroimaging studies have focused on

developing potential markers for brain aging [7, 8]. Brain-age prediction based on machine-

learning algorithms estimates an individual’s ‘brain age’ using structural and functional brain

characteristics derived from magnetic resonance imaging (MRI) [9, 10, 11, 8]. Subtracting

chronological age from estimated brain age provides an estimate of brain aging, the brain-

age delta. For instance, if a 70 year old individual exhibits a brain-age delta of +5 years,

their typical aging pattern resembles the brain structure of a 75 year old, i.e. their esti-

mated brain age is older than what is expected for their chronological age [11]. Individual

variation in delta estimations are associated with a range of cognitive and biological mea-

sures [10, 11, 12, 13, 14, 15, 16, 17], including cardiovascular health [14], and differences in

brain age have been established between patient groups and healthy controls: individuals with

conditions such as Alzheimer’s disease, multiple sclerosis, epilepsy, and psychiatric disorders

show on average older brain age relative to their chronological age [9, 18, 19, 20, 21, 22]. Lon-

gitudinal studies have documented highly reliable brain age prediction in stroke patients [23],

and accelerated brain aging in patients with schizophrenia and multiple sclerosis [21, 24, 25].

Combined with studies on the association between brain-age delta and biomedical factors in

healthy population cohorts [13, 15], the documented reliability and clinical sensitivity sup-

ports the utility of brain-age estimation as a candidate biomarker for neurological senescence

and disease [8].

Modality-specific brain age models (based on e.g. gray and white matter separately) pro-

vide information about tissue-specific aging processes [26, 27]. For instance, imaging-derived
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measures of gray matter are known to detect cortical atrophy in older age-groups [28], while

changes in diffusion MRI measures reflect age-related decline in white matter microstructure,

as well as white matter lesions, which are more prevalent in aging, relative to young, popu-

lations [29]. Functional MRI (fMRI) measures are indicative of brain network connectivity,

which may change with advancing age [2, 3]. Cardiovascular risk factors may influence these

neural aging processes differently [26, 27, 30], and in a recent Whitehall II (WHII) MRI study

using voxelwise analyses, allostatic load, metabolic syndrome, and multifactorial stroke risk

predicted gray matter density measured decades later, while only cumulative stroke risk mea-

sured by the Framingham stroke risk score [31] predicted white matter integrity in terms of

fractional anisotropy and mean diffusivity [32].

In this study of the WHII MRI cohort (N = 671), we investigated whether machine learn-

ing using neuroimaging data could produce reliable biomarkers of brain aging, and whether

cardiovascular risk factors including blood pressure and alcohol intake, and cumulative risk as

indicated by the Framingham stroke risk score were associated with modality-specific brain-

age markers. We estimated brain age using ten-fold cross validation in separate models based

on I) gray matter (GM) measures, II) white matter (WM) measures derived from diffusion

tensor imaging (DTI) and white matter hyperintensites (WMH), III) functional connectiv-

ity measures derived from resting state fMRI (rs-fMRI), and IV) a multimodal model that

included all of the brain measures. A detailed description of the methodology is provided

below.

2. Materials and Methods

2.1. Sample:

The WHII study was established in London in 1985, and included an initial cohort of 10,308

civil servants. Between 2012 and 2013, 6035 individuals participated in the Phase 11 assess-

ment, from which a random sample of 800 participants was enrolled in an MRI sub-study

including brain scans and biomedical assessments [33] (www.psych.ox.ac.uk/research/

neurobiology-of-ageing/research-projects-1/whitehall-oxford). The current sam-

ple was drawn from the WHII MRI sub-study, and included 715 participants with multimodal

MRI data. Forty-four participants were excluded based on neurological disease and incidental
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MRI findings, yielding a final sample of 671 participants. Sample demographics are provided

in Table 1.

Table 1: Sample demographics. Age range (mean age ± standard deviation = 54.70 ± 7.29), percentage male
(M) and female (F) participants, percentage with white (W) and non-white (NW) ethnic background, and
percentage with educational qualifications U = university degree, PG = post-graduate / masters / PhD, Pr
= Professional qualifications, A = A levels or equivalent, O = O levels or equivalent, N = No qualifications.

N Age range Sex % Ethnicity % Educational qualification %
671 60.43 - 84.58 M79 | F21 W95 | NW5 U27 | PG22 | Pr12 | A18 | O14 | C5 | N3

2.2. MRI data acquisition and processing:

MRI data were acquired using a 3 Tesla Siemens Magnetom Verio (n. of participants = 473)

with a 32-channel receive head coil (between April 2012 – Dec 2014) and, following scanner

updates, a 3 Tesla Siemens Magnetom Prisma (n. of participants = 198) with a 64-channel

head-neck coil (June 2015 – Dec 2016). MRI images for all participants were processed using

the analysis pipeline described in [33], including automated surface-based morphometry and

subcortical segmentation as implemented in FreeSurfer 6.0 [34], and residualized with respect

to scanner, relative head motion during the acquisition of rs-fMRI images [35, 36], intracranial

volume (ICV [37]), sex, and ethnic background using linear models.

2.2.1. Gray matter:

In line with recent large-scale implementations [16, 19], we utilized a fine-grained cortical

parcellation scheme [38] to extract cortical thickness, area, and volume for 180 regions of

interest per hemisphere, in addition to the classic set of subcortical and cortical summary

statistics from FreeSurfer [34]. This yielded a total set of 1118 structural brain imaging

features (360/360/360/38 for cortical thickness/area/volume, as well as cerebellar/subcortical

and cortical summary statistics, respectively). To exclude potential outliers, we tested for

values that were ± 4 standard deviations (SD) away from the average on the global MRI

measures mean cortical or subcortical gray matter volume. No outliers were identified based

on the general T1-derived measures.
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2.2.2. White matter microstructure:

Global and tract-specific estimates of fractional anisotropy (FA), mean diffusivity (MD), axial

diffusivity (AD), radial diffusivity (RD) and mode of anisotropy (MO) were calculated for

each individual. In accordance with established methods [39], tract-specific estimates of each

DTI metric were derived using 48 standard-space masks available from the ICBM-DTI-81

White-Matter Labels Atlas [40, 41], producing a total of 245 DTI features. Global WMH

volumes were automatically extracted from FLAIR images with Brain Intensity AbNormality

Classification Algorithm (BIANCA) [42]. To avoid scanner-specific biases in these estimates,

BIANCA was initially trained with WMH masks manually delineated in a sub-sample of

individuals scanned on the Prisma (n = 24) and Verio (n = 24) scanners and an independent

sample from the UK Biobank study (n = 12) [43]. Subjects with values ± 4 SD away from

mean FA or mean MD were excluded, yielding a total of 668 included subjects.

2.2.3. Functional connectivity:

Spatial maps of large-scale resting state networks were derived by applying MELODIC group

Independent Component Analysis (group-ICA, n of components = 25) [44] to the rs-fMRI

images of 678 individuals of the Whitehall II MRI sub-study. All non-artefactual group-ICA

components (n = 19) and subject-specific rs-fMRI timeseries (extracted with dual regres-

sion [45, 46]) were used in FSLNets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets)

in order to generate a 19x19 matrix representing subject-specific correlations between each

pair of networks. Partial correlations (derived using L2 Regularization, setting rho = 0.01 in

Ridge Regression option in FSLNETS) were examined in the present study, as these estimates

allow for a more direct estimate of the connectivity between each pair of nodes [47]. These

partial correlations were then z-transformed using Fisher’s transformation. Subsequently,

the upper triangle of the matrix was converted into a row vector, producing a total of 171

rs-fMRI features for each participant. Subjects with values ± 4 SD away from the average

on any of the fMRI measures were excluded, yielding a total of 651 included subjects.
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2.3. Brain age prediction:

2.3.1. K-fold cross-validation

The XGBoost regressor model https://xgboost.readthedocs.io/en/latest/python) was

used to run the brain-age prediction, including an algorithm that has been used in recent

large-scale brain age studies [16, 19]. Parameters were set to maximum depth = 3, number

of estimators = 100, and learning rate = 0.1 (defaults). Age was estimated in ten-fold cross

validations yielding a multimodal brain-age estimate for each individual, as well as modality-

specific brain-age estimates based on gray matter, white matter, and functional connectivity

measures. To investigate the prediction accuracy, correlation analyses were run for predicted

versus chronological age, and R2, root mean square error (RMSE), and mean absolute error

(MAE) were calculated for each model. After removing outliers for each respective modality,

the multimodal model included 649 subjects. For this model, average RMSE was calculated

from a cross validation with ten splits and ten repetitions, and compared to a null distribution

calculated from 1000 permutations. The result is shown in Figure 1.

4.25 4.50 4.75 5.00 5.25 5.50

RMSE

0

1

2

3

4

5

Figure 1: The mean ± SD root mean square error (RMSE) for the multimodal brain age model was 4.09 ±
0.32 based on the cross validation (red vertical line). The null distribution calculated from 1000 permutations
is shown in grey, with a mean ± SD of 5.30 ± 0.07. The number of permuted results from the null distribution
that exceeded the mean from the cross validation was 0 (p < 0.001).

2.3.2. Data quality analyses

To investigate effects of including versus excluding low-quality imaging data in the models,

we trained two separate models for each modality (with and without low-quality data) on

60% of the sample, and tested them on the remaining 40% of the data. The categorization

of data was based on manual quality checks and images were classified as “poor quality” if
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they contained evidence of excessive motion and/or scanner-related artefacts. For diffusion

weighted images, images with > 5 volumes missing from their scans (which were excluded due

to containing 10 or more outlier slices) were also labelled as “poor quality”. The percentage

of subjects with low-quality data in the training sets was 9% for the gray matter model, 12%

for the white matter model, 13% for the RS functional connectivity model, and 11% for the

multimodal model. To test for differences in model performance before and after excluding

low-quality data, we used a Z test for correlated samples [48]:

Z = (rAll − rQC)/
√

σ2
All + σ2

QC − 2ρσAllσQC (1)

where “All” represents the full sample, “QC” represents the sample with low-quality data

removed, the r terms represent the Pearson’s correlation coefficients of predicted versus

chronological age, the σ terms represent their errors, and ρ represents the correlation between

the two sets of model predictions.

2.3.3. External training sets

As a cross check, we estimated gray-matter based brain age in the current sample using

an external model trained on a 27,200 subjects from UK Biobank, with a mean age ± SD

of 55.40 ± 7.46, and 48% male / 52% female subjects (External model 1). The model

contained the same 1118 structural MRI variables as those included in the WHII k-folding

model (see section 2.2.1). The MRI data were residualized with respect to scanning site, data

quality and motion using Euler numbers [49] extracted from FreeSurfer, ICV, sex, and ethnic

background using linear models. Subjects with known brain disorders were excluded based

on ICD10 diagnose (chapter V and VI, field F and G, excluding G5, http://biobank.ndph.

ox.ac.uk/showcase/field.cgi?id=41270). 43 subjects with values ± 4 SD away from the

average on the measures mean cortical or subcortical gray matter volume were excluded,

yielding a total of 27,157 subjects. The correlation between the brain-age estimates based

on this training set and the estimates based on the k-folding procedure for gray matter was

r = 0.49, p < 0.001, 95% confidence interval (CI) = [0.43, 0.54]. When applied to the WHII

dataset, the RSME was 10.28, and the correlation between predicted and chronological age

was r = 0.49, p < 0.001, 95% CI = [0.43, 0.54].
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To test the performance of a sex-specific external model with a larger age range, we applied

an additional gray matter model trained on a separate sample of 35,474 individuals aged 3–89

(mean age ± SD = 47.30 ± 17.10) [19] (External model 2). The model was derived from

https://github.com/tobias-kaufmann/brainage. For this analysis, the WHII data were

corrected for scanning site, estimated in-scanner head motion, ICV, and ethnic background.

The external model was trained on men and women separately [19], and applied to each sex in

the WHII sample. The correlation between the brain-age estimates based on this training set

and the estimates based on the k-folding procedure for gray matter was r = 0.64, p < 0.001,

95%CI = [0.59, 0.68]. When applied to the WHII dataset, the RSME was 9.58, and the

correlation between predicted and chronological age was r = 0.47, p < 0.001,95% CI = [0.41,

0.53]. As the two external models showed similar performance, we included only the sex-

specific external model 2 with larger age range in the subsequent analyses, herein referred to

as “the external model”.

2.4. Brain age delta and biomedical measures:

To investigate associations with biomedical variables, the brain-age delta (predicted age –

chronological age) was used as a measure of apparent brain aging. Clinical measures included

systolic and diastolic blood pressure, alcohol intake measured by units per week (see [50]

for details), and the Framingham stroke risk score [31], which includes cardio-metabolic

measures, smoking habits, diabetes, sex, and age (see [32] for full description). Blood pressure

and alcohol intake were corrected for sex, ethnic background, and educational level using

linear models. Stroke risk score was corrected for ethnic background and educational level,

as sex was already accounted for in the score. 624 subjects had data on all biomedical

variables as well as demographic variables. Subjects with values ± 4 SD away from the

average on any of the variables were excluded from the analyses, yielding 616 subjects in

total. The mean ± SD for each measure is shown in Table 2.

Table 2: Mean ± standard deviation on each of the biomedical measures.

N Systolic BP Diastolic BP Alcohol intake Framingham Stroke Risk score
616 140.52 ± 16.48 77.17 ± 10.47 14.55 ± 13.47 11.04 ± 5.46
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To obtain a direct comparison of β values, both the brain-age deltas and the clinical

variables were standardized (subtracting the mean and dividing by the SD) before a series of

multiple regressions were run. In order to adjust for a frequently observed bias in brain-age

prediction leading to an overestimation of brain age in younger subjects and an underesti-

mation of brain age in older subjects [14, 15, 30, 51, 52], chronological age was included as

a covariate. Correction for multiple comparisons was performed using false-discovery rate

correction [53]. The statistical analyses were conducted using Python 3.7.0.

3. Results

3.1. Brain age prediction:

Figure 2 shows the correlations between predicted age and chronological age for each of

the models. The multimodal, gray matter, and white matter models showed consistent

performance with explained variance (R2) ± standard error (SE) of 0.33 ± 0.02, 0.31 ±

0.02 and 0.31 ± 0.03, respectively, while the functional connectivity model showed lower

prediction accuracy with an R2 ± SE of 0.02± 0.04. The explained variance of the predictions

based on the external gray matter model was 0.22 ± 0.03. The accuracy of each model’s

prediction measured by R2, adjusted R2, RMSE, and MAE are shown in Table 3. As a

follow-up analysis, we re-ran the multimodal model without the rs-fMRI data to test for

prediction improvements. The results showed comparable performance with and without the

rs-fMRI data (RMSE = 4.14 vs 4.17, z = −1.14, p = 0.26). Figure 3 shows the proportion of

variance in chronological age explained by each of the models. Figure 4 shows the correlations

between the multimodal and modality-specific brain-age deltas. The delta values were first

corrected for age-bias [14, 15, 30, 51, 52] using linear models, and the residuals were used

in the correlation analyses. Excluding low-quality data improved the multimodal model

(z = 2.07, p = 0.04), but none of the other models, as shown in Table 4 and 5.
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Figure 2: The association between predicted and chronological age for each of the models is shown by the
red line. The black line illustrates a perfect relationship between x and y.

Table 3: Number of MRI variables, R2, adjusted R2, root mean square error (RMSE), and mean
absolute error (MAE) for each of the brain-age models. RMSE and MAE are reported in years.

Model MRI variables R2 Adj R2 RMSE MAE
Multimodal 1535 0.339 0.337 4.138 3.335
Gray matter 1118 0.307 0.305 4.246 3.420
White matter 246 0.301 0.299 4.268 3.383
F. connectivity 171 0.011 0.008 5.195 4.212
External model 1118 0.221 0.218 9.584 8.279
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Figure 3: The proportion of variance in chronological age explained (R2± standard error) by the multimodal
model, the modality-specific models, and the external model based on a separate training sample.
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Figure 4: The correlations (Pearson’s r) between brain-age deltas of the multimodal model, the modality-
specific models, and the external model based on a separate training sample. The delta values are corrected
for chronological age.
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Table 4: The correlation (Pearson’s r) between predicted and chronological age based on training
sets with and without low-quality data applied to the same test set. 95% confidence intervals are
indicated in square brackets. Z represents the difference in r values expressed in standard deviations,
accounting for the correlated samples (Eq.1.)

Model All data included QC data excluded Z p
Multimodal r = 0.54, [0.44, 0.62] r = 0.57, [0.48, 0.64] 2.07 0.04
Gray matter r = 0.56, [0.47, 0.64] r = 0.59, [0.50, 0.66] 1.70 0.09
White matter r = 0.51, [0.42, 0.59] r = 0.50, [0.40, 0.58] -0.72 0.47
F. connectivity r = 0.08, [−0.04, 0.20] r = 0.07, [−0.05, 0.19] -1.57 0.12

Table 5: Root mean square error (RMSE) and mean square error (MAE) for the predictions based
on training sets with and without low-quality data (LQD) applied to the same test set. RMSE and
MAE are reported in years.

Model RMSE RMSELQD−excluded MAE MAELQD−excluded

Multimodal 4.38 4.23 3.44 3.34
Gray matter 4.25 4.18 3.45 3.43
White matter 4.48 4.51 3.60 3.64
F. connectivity 5.43 5.41 4.33 4.28

3.2. Biomedical predictors:

The associations between blood pressure (BP), alcohol intake, and stroke risk and brain-age

deltas are shown in Figure 5 and Table 6. The associations were consistent across models.

To test for non-linear relationships, polyfits including both a linear and a quadratic term (γ)

were run for the multimodal brain age and each variable. No non-linear associations were

found (Systolic BP: γ = 0.002± 0.028, p = 0.948; Diastolic BP: γ = −0.003± 0.028, p =

0.928;; Alcohol intake: γ = 0.023 ± 0.028, p = 0.413; Framingham stroke risk score:

γ = 0.004± 0.028, p = 0.887).
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Table 6: Relationships between biomedical variables and

brain-age delta for each modality, including age as a co-

variate. p-values are reported before and after FDR cor-

rection. Corrected p-values below 0.05 are marked with

an asterisk.

Model β SE t p pcorr

BP Systolic
Multimodal 0.04 0.02 1.79 0.073 0.112
Gray matter 0.00 0.02 0.22 0.826 0.826
White matter 0.05 0.02 2.00 0.046 0.077
F. connectivity 0.03 0.01 2.78 0.006 0.022*
External model 0.03 0.03 0.83 0.408 0.429

BP Diastolic
Multimodal 0.05 0.02 2.35 0.019 0.039*
Gray matter 0.02 0.02 1.00 0.317 0.354
White matter 0.04 0.02 1.73 0.084 0.113
F. connectivity 0.03 0.01 2.39 0.017 0.039*
External model 0.03 0.03 1.00 0.318 0.354

Alcohol intake
Multimodal 0.07 0.02 2.94 0.003 0.017*
Gray matter 0.08 0.02 3.73 < 0.001 0.004*
White matter 0.04 0.02 1.75 0.081 0.113
F. connectivity 0.03 0.01 2.02 0.044 0.077
External model 0.12 0.03 3.59 < 0.001 0.077

Stroke risk
Multimodal 0.09 0.03 3.47 0.001 0.004*
Gray matter 0.06 0.03 2.34 0.020 0.039*
White matter 0.07 0.03 2.52 0.012 0.039*
F. connectivity 0.03 0.01 2.38 0.018 0.039*
External model 0.06 0.04 1.49 0.136 0.169
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Figure 5: The associations (β± standard error) between standardized measures of brain-age delta and blood
pressure, alcohol intake, and Framingham stroke risk score for each of the brain-age models. The analyses
included age as a covariate.
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4. Discussion

Our findings demonstrate that machine learning models provide meaningful imaging-based

biomarkers for brain aging in healthy population cohorts [13, 15]. We found that a) the

multimodal, gray matter, and white matter based models showed comparable performance,

while the functional connectivity model showed lower prediction accuracy, b) blood pressure,

alcohol intake, and stroke risk scores were each associated with brain-age deltas, and c) these

associations were consistent across modalities.

Although previous studies have suggested better prediction with multiple imaging modal-

ities [13, 14, 30, 54], the current study showed equivalent prediction accuracy between the

multimodal model and the gray and white matter models. The exclusion of low-quality data

improved the performance of the multimodal model, suggesting that established procedures

for data quality control may have implications for model performance [39, 55]. Although

there was also a tendency for the gray matter model to improve with the exclusion of low-

quality data, discarding such data did not affect the performance of the white matter and

functional connectivity models. The external gray matter model that was trained on an in-

dependent sample showed less accurate prediction of brain age in our data compared to the

k-folding based gray matter model. While both datasets were corrected for factors including

scanner site, motion, and ICV, such discrepancies indicate that confounding factors includ-

ing recruitment procedures, scanner equipment and data-processing pipelines may influence

prediction accuracy across datasets [56].

The lowest prediction accuracy was observed for rs-fMRI, indicating that the included

measures of functional connectivity were less closely related to chronological age compared

to structural measures. Although it is possible that voxel-wise functional connectivity mea-

sures could improve the model performance [57], the lower age-sensitivity of rs-fMRI mea-

surements may be explained by these metrics reflecting a state, rather than trait based,

assessment [58, 59, 60]. While resting-state networks, including the default mode network,

are characterized as highly replicable both within-participants and across studies [45, 61, 62],

investigations employing dynamic rs-fMRI conversely suggest that the connectivity between

these networks may vary even within a single session of scanning [63]. Alternatively, resting-

state networks and their connectivity to other networks may be preserved though plasticity
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despite age-related structural changes [64]. Another potential explanation is that age-related

changes to network connectivity occur in a modular, rather than gradual manner [65, 66].

While gray and white matter based brain-age models provide relatively accurate predictions

across studies [13, 15, 17, 19, 26], a recent application of brain-age estimation in the UK

Biobank cohort similarly highlights fMRI-based brain-age prediction as a weaker correlate of

chronological age (r = 0.434), relative to gray matter (r = 0.685) and DTI-based (r = 0.668)

predictions [14].

Despite poorer performance accuracy of the functional connectivity model, the fMRI-

based brain-age deltas showed associations with the biomedical variables that were similar to

the other modalities. In line with recent findings from UK Biobank [14, 15], positive associ-

ations were found between brain-age deltas and diastolic blood pressure, alcohol intake, and

stroke risk, concurring with previous WHII studies [32, 50], and demonstrating that the brain

age-delta measure reflects individual variation in neural aging processes [30]. The associa-

tions with biomedical variables were consistent across models (see Figure 5), indicating that

while modality-specific brain age models may be informative in patient groups where tissue

types are differently affected by disease [26, 27, 54, 67, 68], such models may be more closely

related in healthy cohorts [14]. It is possible that regional modelling of modality-specific

brain aging patterns may be more suitable to detect specific associations with biomedical

and clinical measures [19], which could get lost in machine learning models that summarise

aging across the whole brain to produce a single global prediction [27].

In conclusion, machine-learning based brain age prediction can reduce the dimensionality

of neuroimaging data to provide meaningful biomarkers of individual brain aging. While the

presented imaging-derived markers can help to assess general effects of clinical and biomedical

risk factors on the brain, models of distinct and regional neural aging patterns may result in

more refined biomarkers that can capture additional biological detail [19, 26, 27].
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