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AAbstract 41 

Probabilistic associations between stimuli afford memory templates that guide perception 42 
through pro-active anticipatory mechanisms. A great deal of work has examined the behavioural 43 
consequences and human electrophysiological substrates of anticipation following probabilistic 44 
memory cues that carry spatial or temporal information to guide perception. However, less is 45 
understood about the electrophysiological substrates linked to anticipating the sensory content 46 
of events based on recurring associations between successive events. Here, we demonstrate 47 
behavioural and electrophysiological signatures of utilising associative-memory templates to 48 
guide perception, while equating spatial and temporal anticipation (Experiment 1 and 2), as well 49 
as target probability and response demands (Experiment 2). By recording the 50 
electroencephalogram (EEG) in the two experiments (N=55; 24 Female), we show that two 51 
markers in human electrophysiology implicated in spatial and temporal anticipation also 52 
contribute to anticipation of perceptual identity: attenuation of alpha band oscillations and the 53 
contingent negative variation (CNV). Taken together, our results show that memory-guided 54 
identity templates proactively impact perception and are associated with anticipatory states of 55 
attenuated alpha oscillations and the CNV. Furthermore, by isolating object-identity anticipation 56 
from spatial and temporal anticipation, our results suggest a role for alpha attenuation and the 57 
CNV in specific visual content anticipation beyond general changes in neural excitability or 58 
readiness.  59 
 60 

 61 

 62 
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Significance Statement 69 
Probabilistic associations between stimuli afford memory templates that guide perception 70 
through pro-active anticipatory mechanisms. The current work isolates the behavioural benefits 71 
and electrophysiological signatures of memory-guided identity-based anticipation – while 72 
equating anticipation of space, time, motor responses, and task-relevance. Our results show that 73 
anticipation of the specific identity of a forthcoming percept impacts performance and is 74 
associated with states of attenuated alpha oscillations and the contingent negative variation 75 
(CNV) – extending previous work implicating these neural substrates in spatial and temporal 76 
preparatory attention. Taken together this work bridges fields of attention, memory, and 77 
perception, providing new insights into the neural mechanisms that support complex attentional 78 
templates. 79 

80 
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IIntroduction 81 

Probabilistic associations between stimuli can lead to memory-based templates that impact 82 

perceptual performance through anticipation of the location, temporal onset, identity, or 83 

features of anticipated sensory events. Early studies relied on relatively simple symbolic cues 84 

(e.g., arrows) to demonstrate that attention can be guided in space, time, and across features to 85 

facilitate performance (Coull & Nobre, 1998; Posner, 1980; Treue & Martinez Trujillo, 1999). 86 

More recently, studies have considered attentional orienting in more naturalistic tasks, in which 87 

the contents of long-term memory, often probabilistic in nature, guide the processing of 88 

incoming stimuli (Hutchinson & Turk-Browne, 2012). The bulk of the studies investigating 89 

memory-guided attention have focused primarily on anticipating spatial location (Awh, 90 

Belopolsky, & Theeuwes, 2012; Chun & Jiang, 1998; Goldfarb, Chun, & Phelps, 2016; Jiang, 2018; 91 

J. J. Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 2006) and the expected temporal onset 92 

of items (Cravo, Rohenkohl, Santos, & Nobre, 2017; Olson & Chun, 2001). However, in addition, 93 

there is mounting interest in investigating mechanisms that support memory-based anticipation 94 

of the identity of upcoming percepts (Kok, Jehee, & de Lange, 2012; Peelen & Kastner, 2014; 95 

Stokes, Myers, Turnbull, & Nobre, 2014; C. Summerfield, Trittschuh, Monti, Mesulam, & Egner, 96 

2008; Turk-Browne, Isola, Scholl, & Treat, 2008; Turk-Browne, Scholl, Johnson, & Chun, 2010).  97 

Identity anticipation through ‘perceptual templates’ plays a central role in theories of 98 

attention (e.g. Desimone & Duncan, 1995; Duncan & Humphreys, 1989; Wolfe, 1994). In much of 99 

the work examining perceptual templates to date observers are explicitly provided with the 100 

template of the forthcoming target. That is, they are shown a particular object which they must 101 

subsequently match or search, such as in delayed-match-to-sample or visual search tasks 102 

(Carlisle, Arita, Pardo, & Woodman, 2011; Chelazzi, Duncan, Miller, & Desimone, 1998; Chelazzi, 103 

Miller, Duncan, & Desimone, 1993; van Driel, Gunseli, Meeter, & Olivers, 2017). Though this can 104 

be informative in assessing perceptual templates, it fails to capture a common everyday 105 

experience in building memory templates. Outside of the laboratory, frequent associations 106 

between successive different stimuli support the establishment of memory templates. Building 107 

on previous work investigating associative memory templates (Higuchi & Miyashita, 1996; Kok, 108 

Failing, & de Lange, 2014; Kok et al., 2012; Kok, Mostert, & De Lange, 2017; Rainer, Rao, & Miller, 109 
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1999; Turk-Browne et al., 2008, 2010), we here targeted two specific human electrophysiological 110 

substrates of associative memory templates during the anticipatory period.   111 

 We developed a task to investigate the anticipation of visual-identity information based 112 

on probabilistic associative memory. We report robust behavioral benefits on target perception 113 

in the context of a demanding visual identification task. We also investigated the 114 

electrophysiological markers linked to proactive template-based anticipation, specifically testing 115 

for the involvement of two canonical neural markers of anticipation from the spatial and 116 

temporal orientating literatures – the modulation of alpha-band oscillations and the Contingent 117 

Negative Variation (CNV).  118 

Alpha attenuation has been associated with both spatial (Haegens, Nacher, Luna, Romo, 119 

& Jensen, 2011; Thut, Nietzel, Brandt, & Pascual-Leone, 2006; van Ede, 2018; Worden, Foxe, 120 

Wang, & Simpson, 2000) and temporal (Heideman et al., 2018; Rohenkohl & Nobre, 2011; van 121 

Ede, Niklaus, & Nobre, 2017; Zanto et al., 2011) orienting of attention, including during long-122 

term-memory-guided anticipation (Stokes, Atherton, Patai, & Nobre, 2012). Likewise, the CNV is 123 

an ERP component classically associated with temporal anticipation (Cravo, Rohenkohl, Wyart, & 124 

Nobre, 2011; Los & Heslenfeld, 2005; Miniussi, Wilding, Coull, & Nobre, 1999; Nobre, 2001; 125 

Pfeuty, Ragot, & Pouthas, 2005; Praamstra, Kourtis, Kwok, & Oostenveld, 2006), also in the 126 

context of long-term-memory-guided anticipation (Cravo et al., 2017). Probing the involvement 127 

of these electrophysiological signatures during object-identity anticipation is important to inform 128 

a relevant and current theoretical debate about the nature of such markers. Alpha and CNV 129 

modulations during anticipation in space and time may purely reflect changes in the excitability 130 

of underlying neuronal populations (Benwell et al., 2017; Lemi, Chaumon, Crouzet, & Busch, 131 

2017; Romei et al., 2008; Romei, Gross, & Thut, 2010; Samaha, Gosseries, & Postle, 2017), 132 

independent of “informational content”. In the current work, we isolate identity anticipation and 133 

control for general “readiness” or “excitability” by equating spatial and temporal anticipation as 134 

well as target and response probabilities. If alpha and CNV modulations nevertheless still occur 135 

under these conditions, this would provide evidence that they also play a role in the anticipation 136 

of visual content.  137 

  138 
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MMethods 139 

Participants 140 

In both experiments, all participants were right-handed with normal/corrected-to-normal vision 141 

had no history of neurological disorders, and were not taking any neurological medication. All 142 

participants gave informed written consent, and were compensated £15 per hour for a total of 143 

£45. The experiments were approved by the Oxford Central University Research Ethics 144 

Committee. 145 

 In Experiment 1, thirty volunteers participated. Out of the 30 participants, 5 of the 146 

participants missed > 80% of the difficult targets preceded by a non-predictive S1. On this basis, 147 

these participants were excluded from the analysis. Of the twenty-five remaining participants 148 

the average age was 24.2 (18-33) and there were 9 females.  149 

 In Experiment 2, thirty-six volunteers participated. Out of the 36 participants, 6 of the 150 

participants performed at chance for targets on non-predictive S1 trials. On this basis, these 151 

participants were excluded from the analysis. Of the remaining thirty participants the average 152 

age was 27.1 (20-34) and 15 were female. 153 

 154 

Procedures 155 

Participants sat in a dimly-lit booth at a distance of 100 cm from the monitor (22 inch Samsung 156 

SyncMaster 2233; resolution: 1680 × 1050 pixels; refresh rate: 100 Hz; screen width: 47 cm). The 157 

experimental script was generated using Psychophysics Toolbox (Brainard, 1997) on MATLAB 158 

(version 2014b, The Mathworks Inc., Natick, NA, USA). Participants were instructed to refrain 159 

from excessive blinking and to keep their face as relaxed as possible to avoid muscular artifacts 160 

in the EEG recordings.  161 

 162 

Experiment 1 163 

The structure of Experiment 1 is shown in Figure 1. Participants were shown a random sequence 164 

of objects taken from a set of 14 objects from the Novel Object and Unusual Name database 165 

(NOUN) (Horst & Hout, 2016). Among these objects there were four critical objects: easy S1, 166 

easy target, difficult S1, and difficult target, and ten neutral objects. These four objects were 167 
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randomly allocated to every fourth participant and then counter-balanced for subsequent 168 

participants such that for each random allocation of four objects, each object held each of the 169 

four critical roles. Participants’ task was to press a corresponding key (either “m” or “x” key) 170 

whenever they detected a target. The targets switched their association with the keys randomly 171 

between blocks, such that each target was associated with the “x” and “m” buttons for half of 172 

the blocks.  173 

Before the start of the task, observers were informed about the S1 objects. Specifically, 174 

they were told that following the presentation of a predictive S1 there was a 70% probability 175 

that the next item would be the corresponding target (i.e. the paired associate). Therefore, 176 

within the stream, specific S1 identities would predict specific target identities. In the other 30% 177 

of the trials each of the other items was equiprobable.  178 

A single trial consisted of the following sequence: stimulus 1 (S1), blank, stimulus 2 (S2), 179 

and a mask. S1 could either be a predictive or a non-predictive and was always presented for 250 180 

ms. S2 could either be one of the targets or a foil object. S2 was immediately followed by a 100-181 

ms mask that consisted of patches drawn randomly from the potential target items. For each set 182 

of objects 3 of these masks were created and used randomly throughout the experiment. Target 183 

difficulty was determined by its exposure duration. The easy target was always presented for 150 184 

ms before the mask, whereas the difficult target was presented for only 25 ms before the mask. 185 

The neutral objects were shown for either 150 or 25 ms equiprobably, i.e. any particular neutral 186 

object would be shown for 150 and 25 ms half of the time. The mask was followed by a 1000-ms 187 

blank before the next trial began. With this design the appearance of S2 was completely 188 

predictable in space and time. Participants completed 14 blocks of 100 trials in total. 189 

 190 

Experiment 2 191 

The structure of Experiment 2 is shown in Figure 4. The stimuli, experimental set up, and EEG 192 

procedures were the same as in Experiment 1. A trial was similar to that of Experiment 1, with a 193 

few critical changes. On each trial, participants first saw S1 (250 ms) which again could be a 194 

predictive or an non-predictive S1 with equal probability. This was followed by a 750-ms blank 195 

and the quick presentation of one of three targets (30 ms) – we will refer to these targets as 196 
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target A, B, or C. That is, there was a task-relevant item presented on every trial. Critically, two of 197 

these items (target A and target B) were predictable based on S1, whereas the other item (target 198 

C) was always equally probable after all S1 stimuli. Following the presentation of the target and a 199 

mask (100 ms), all three potential targets appeared on the screen and observers used the left, 200 

down, and right arrow keys to indicate which object they had just seen. The position of the three 201 

targets was randomized across trials such that observers could not prepare their response 202 

before the response screen. The stimuli were randomly allocated to each participant. With these 203 

changes to the design, every trial and item was task relevant, and participants could not prepare 204 

a specific response during the period after S1. Here, therefore, predictive and non-predictive S1s 205 

differed only with regard to its ability vs inability to form a specific target template in anticipation 206 

of S2.  207 

 The relationships between the S1 and target items were explicitly detailed to the 208 

participants before the experiment. In total there were eight potential S1 items. Four of these 209 

items were predictive and four were non-predictive. Of the four predictive S1s, two predicted 210 

target A and two predicted target B. That is if one of these predictive S1 objects appeared the 211 

associated target would follow in 2/3 of the trials. In the remaining 1/3 of the trials Target C 212 

would appear. On non-predictive S1 trials all targets were equally likely. As such, throughout the 213 

experiment, all three targets were equally likely to appear such that there was no higher 214 

probability of a predictable target.  215 

 216 

BBehavioral analysis (Experiment 1 & 2) 217 

Behavioral data were analyzed using R (R Core Team, 2018). Reaction times and error rates were 218 

submitted to an ANOVA implemented in the ez package (Lawrence, 2013) and t-tests 219 

implemented in lsr (Navarro, 2015). Effect size estimates ( G
2 & d) are provided for all effects. 220 

Plotting was completed using the ggplot2 package in R (Wickham, 2009). 221 

 222 

EEG Acquisition (Experiment 1 & 2) 223 

We acquired EEG using Synamps amplifiers and Neuroscan data acquisition software 224 

(Compumedics). Sixty-one electrodes were distributed across the scalp using the international 225 
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10–10 positioning system. The left mastoid was used as the active reference, and we included a 226 

right mastoid measurement to derive an average-mastoid reference offline. The ground was 227 

placed on the left upper arm. Additionally, vertical and horizontal EOG electrodes were used to 228 

monitor for eye blinks and eye movements. During acquisition, data were low-pass filtered by an 229 

anti-aliasing filter (250-Hz cutoff), digitized at 1000 Hz, and stored for offline analysis. 230 

 231 

EEEG Preprocessing (Experiment 1 & 2) 232 

The preprocessing and analysis scripts for both experiments can be found as html files and as 233 

reproducible scripts (jupyter notebooks; (Kluyver et al., 2016) at 234 

https://github.com/SageBoettcher/identityTemplates. The preprocessing pipeline is modified 235 

from the analysis pipeline used by Draschkow and colleagues (Draschkow et al., 2018). All EEG 236 

data analysis was conducted in MNE-Python (Gramfort et al., 2013). The data were down-237 

sampled to 200 Hz, and high-pass filtered at 0.1 Hz. To regress out eye-movement activity, an 238 

Independent component analysis (ICA; Jung et al., 2000) was used to decompose the data – 239 

which was high-pass filtered at 1 Hz – into sixty temporally independent components. Eye-240 

movement components were detected by first correlating the filtered data with the 241 

electrooculography (EOG) and subsequently, when needed, manually selecting a subset of 242 

typical component maps and identifying the best group match to them (Viola et al., 2009). 243 

Selected components were then removed from the data. Trials were segmented from -200 ms to 244 

+750 ms (Experiment 1) or +1000 ms (Experiment 2) relative to the onset of S1. Average activity 245 

over the 200 ms preceding the stimulus onset was used as a baseline against which all 246 

amplitudes were calculated. Finally, epochs with especially high variance were discarded. These 247 

epochs were detected through a generalized extreme studentized deviate (ESD) test for outliers 248 

with an alpha value of .05 and discarded from the analysis. On average 34 trials out of 1400 were 249 

discarded in the manner. 250 

 251 

EEG Data Analysis (Experiments 1 & 2) 252 

Alpha 253 
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For the time-frequency analysis, we used epochs from -200 to 1000 ms. Morlet wavelets were 254 

convolved with the data between 3 and 40 Hz. For each frequency, we used a fixed 400-ms time 255 

window such that the number of cycles changed with the frequency. After the time frequency 256 

transformation, activity was averaged over all posterior electrodes (P7, P5, P3, P1, Pz, P2, P4, P6, 257 

P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2) and contrasted between predictive and non-predictive 258 

trials (separately for the easy and difficult conditions in Experiment 1). We expressed this as a 259 

normalised difference (((predictive minus non-predictive) / (predictive plus non-predictive)) * 260 

100).  261 

 262 

ERPs 263 

The event-related potentials (ERPs) were calculated by averaging trials within a participant and 264 

then subsequently averaging these waveforms across participants separately for each condition. 265 

The ERPs were averaged across a predefined set of central-posterior electrodes (‘P1’, ‘Pz’, ‘P2’, 266 

‘CPz’, ‘POz’) as well as central-frontal electrodes (‘F1’, ‘Fz’, ‘F2’, ‘AFz’, ‘FCz’). These electrodes 267 

were chosen based on previous work showing peak amplitude for the CNV at electrode Fz and 268 

peak amplitude for potentials linked to retrieval at electrode Pz. We focused our analyses on 269 

these electrodes and included the immediately surrounding electrodes to increase potential 270 

sensitivity. 271 

 272 

EEG statistical analysis 273 

Inferential claims about differences between conditions were based on cluster-based 274 

permutation test (Maris & Oostenveld, 2007) and reported according to recommendations by 275 

Sassenhagen & Draschkow (2019).  276 

 277 

Results 278 

Experiment 1: Target Templates and Target Difficulty 279 

In Experiment 1 we investigated whether identity templates from associative memory impact 280 

perception, as well as the neural markers that may be involved in this template-based 281 

anticipation. To evaluate the adaptive utility of the identity template, we additionally asked to 282 
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what extent these hypothesized effects depend on the anticipated perceptual difficulty of the 283 

target.  284 

The structure of the experiment is shown in Figure 1. On each trial, participants saw two 285 

sequential objects (S1 & S2) followed by a mask. Whenever participants saw one of their two 286 

potential targets – always in the S2 position – they responded with a corresponding button press 287 

on a keyboard (m or x, counterbalanced across blocks). The S1 item could either be predictive or 288 

non-predictive of the identity of the upcoming item. Predictive S1s were followed by their 289 

respective S2-target in 70% of trials. Spatial and temporal predictions were fixed with 290 

presentation always appearing in the center of the screen after 750 ms; therefore, predictive 291 

and non-predictive S1s differed in that only predictive S1s enabled participants to anticipate the 292 

identity of the upcoming S2 stimuli.  293 
  294 

Figure 1. Trial schematic and behavioral data from Experiment 1. (A) an example of the trial sequence 295 
from Experiment 1. On each trial, participants saw stimulus 1 (S1) which could either be predictive or 296 
non-predictive about the following stimulus 2 (S2) which could an easy target (150 ms), a difficult 297 
target (25 ms), or a foil (25 or 150 ms). S2 was immediately followed by a mask. Participants were 298 
instructed to respond to the targets (but not the foils) with the corresponding button as quickly as 299 
possible. (B) The probability of a specific S2 target following a predictive S1 was 70%, whereas non-300 
predictive S1s were equally likely to be followed by either of the two potential targets, or either of the 301 
4 foils. S1-S2 relationships were made explicit to participants before starting the experiment. (C) 302 
Participants responded more quickly and more accurately to targets preceded by a predictive S1 as 303 
well as to easy targets. Additionally, there was a significant interaction in both RT and percent error 304 
indicating that predictive S1s had a larger benefit in the difficult-target trials.  305 

 306 

Behavioral Results 307 

To assess whether predictive S1s impact performance and whether this effect was modulated by 308 

the expected target difficulty, we conducted repeated-measures ANOVAs on RT and error rates 309 

with S1 type (predictive and non-predictive) and target difficulty (easy and difficult) as factors. 310 

Behavioral results are depicted in Figure 1C. Target difficulty and S1 type interacted significantly 311 

in both RT (F(1,24) = 5.4, p = .03 , G
2 = .002) as well as error rates (F(1,24) = 12.0, p = .002 , G

2 = 312 

.08). Moreover, we found main effects of S1 type and target difficulty for both RT (S1 effect: 313 

F(1,24) = 87.3, p < .001 , G
2 = .41; difficulty effect: F(1,24) = 7.9, p = .009 , G

2 = .01) and error 314 

rates (S1 effect: F(1,24) = 29.5, p < .001 , G
2 = .21; difficulty effect: F(1,24) = 15.4, p < .001 , G

2 315 

= .28).  Paired samples t-tests (Bonferroni corrected p-values) revealed a significant RT benefit 316 

(i.e., faster RTs) of the predictive S1 for both easy and difficult targets (easy: t(24) = 9.17, p < 317 
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.001, d = 1.83; difficult: t(24) = 9.11, p < .001, d = 1.82), and that the benefit of the predictive S1 318 

was larger for difficult targets (t(24) = 2.33, p = .03, d = .47). The same pattern occurred for error 319 

rates, with a significant benefit (i.e., lower errors) following predictive vs. non-predictive S1 items 320 

in trials with an easy target (t(24) = 2.9, p = .01, d = .59) as well as trials with a difficult target 321 

(t(24) = 4.93, p < .001, d = .99). Once again this benefit of predictive S1s was larger for difficult 322 

targets (t(24) = 3.46, p = .002, d = .69). Thus, predictive objects impact performance on the 323 

target, and this benefit was particularly pronounced when the targets were difficult to perceive. 324 

The above results considered only target-present trials. For completeness, we also 325 

analyzed foil trials to determine if predictive S1s also led to more false alarms. We found that 326 

observers were indeed more likely to false alarm to a foil following a predictive compared to a 327 

non-predictive S1 (t(24) = 3.14, p = .004, d = .62; 14.5% vs. 1.5% false alarms). Because the 328 

probability that a target would appear after an informative S1 was higher than the probability 329 

that a non-target would appear (in Experiment 1, but not Experiment 2 as we return to later), 330 

this increase in false-alarms following predictive S1s may simply reflect a strategic decision of 331 

participants to report the target when unsure.  332 

 333 

EEG Results 334 

Alpha 335 

To assess the effect of a predictive vs. non-predictive S1s on induced brain activity, we first 336 

compared time- and frequency-resolved maps of power (collapsed over all posterior electrodes; 337 

see insets Figure 2A,B) from the onset of S1 until 250 ms after the onset of the S2 as seen in 338 

Figure 2. More specifically, we directly contrasted trials with a predictive and a non-predictive 339 

S1. We did so separately for trials with a predictive S1 that predicted an easy target (predictive-340 

easy S1) and trials with a predictive S1 that predicted a difficult target (predictive-difficult S1). 341 

The same non-predictive-S1 trials were used for both comparisons. Significant clusters emerged 342 

following both the predictive-easy S1 (Fig. 2A, p < .001) and following the predictive-difficult S1 343 

(Fig. 2B, p < .001) in comparison to following the non-predictive S1. The maximal attenuation 344 

within these clusters for both the easy and difficult S1 occurred around 11 Hz and 600 ms after 345 

S1 onset, i.e. mostly concentrated within the alpha band. A topographic inspection confirmed 346 
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that these effects had a clear posterior topography in line with a visual preparation effect. There 347 

were no significant clusters when directly contrasting easy to difficult S1s (all cluster ps > .13).  348 

 To have a clearer understanding of the time course of the alpha attenuation, we also 349 

averaged these effects along the classical alpha band (8-12 Hz; Fig. 2C). Once again, we found a 350 

significant cluster for both the easy (p < .001) and the difficult S1s (p < .001); with no significant 351 

difference according to the difficulty levels during the anticipation period (p = .14, with the only 352 

cluster forming after the onset of the target).  353 
 354 

FFigure 2. Alpha attenuation following predictive vs. non-predictive S1s in Experiment 1. (A) Time 355 
frequency results for posterior electrodes shows alpha attenuation in the predictive easy S1 trials vs. 356 
the non-predictive trials, as well as in the predictive difficult S1 trials vs. the non-predictive S1 trials 357 
(B). The topographies are plotted on the same scale as the above time frequency plot. C) shows the 358 
time course of the alpha attenuation averaged between 8 and 12 Hz. Vertical lines at 750 ms show 359 
the onset of the S2 target. Significant clusters with a p value < .05 are denoted with the black outline 360 
(panels A and B) and as horizontal lines in panel C. Shaded areas represent ± 1 SEM (68% confidence 361 
intervals). 362 
 363 

ERPs 364 

To investigate the anticipatory nature of identity-based templates, we additionally investigated 365 

event-related-potentials (ERPs) locked to the onset of predictive-easy S1s, predictive-difficult 366 

S1s, and non-predictive S1s for predefined clusters of frontal and posterior electrodes. The 367 

results are depicted in Figure 3. We were specifically interested in testing if these identity-based 368 

predictions also produce a CNV – a frontal negativity – in the pre-defined frontal electrodes.  369 

We first considered the frontal electrode cluster (Fig. 3A). For both the predictive-easy 370 

and the predictive-difficult S1 cues, we found a significantly larger negativity in the late S1-S2 371 

cue-target interval, compared to the non-predictive S1 cues (easy: p<.001, difficult: p<.001). 372 

These negativities were associated with a frontal topography characteristic of the CNV (Fig. 3C). 373 

In the S1-predictive-easy condition we additionally found an early positivity (p = .004) that is 374 

likely a spillover effect from an earlier more posterior positivity that we return to below (as also 375 

confirmed by the time-resolved topographical analysis presented in Figure 3C). There were no 376 

significant clusters when contrasting the easy and difficult S1s (ps > .43). 377 

 When comparing effects for predictive vs. non-predictive S1 cues in the predefined 378 

posterior electrodes (Fig. 3B) a significant cluster was identified from around 200 to 600 ms for 379 

both easy and difficult (ps < .01) The effect reflected a late positive potential elicited by 380 
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predictive cues. Topographical analysis confirmed the potential was centrally distributed over 381 

the posterior scalp (Fig. 3C). As with the alpha modulations and the CNV, there were no 382 

significant clusters when comparing the easy and difficult predictive S1s (all cluster ps > .43). 383 

These effects were confirmed, and also nicely demonstrated, by the time-resolved 384 

topographies of predictive vs. non-predictive S1 (separated by the easy and difficult conditions), 385 

as depicted in Figure 3C.  386 
  387 

 388 
Figure 3. Posterior positivity and frontal negativity following predictive vs. non-predictive S1s in 389 
Experiment 1. (A) ERPs locked to the onset of S1 and averaged across a subset of frontal electrodes 390 
(‘F1’, ‘Fz’, ‘F2’, ‘AFz’, ‘FCz’). Predictive S1s show a late frontal negativity relative to non-predictive S1s, 391 
while difficulty did not significantly modulate this effect. (B) ERPs locked to the onset of S1 and 392 
averaged across a subset of posterior electrodes (‘P1’, ‘Pz’, ‘P2’, ‘CPz’, ‘POz’). The predictive S1s show a 393 
clear positive deflection from the non-predictive S1, while difficulty did not significantly modulate this 394 
effect. (C) Topographies of the ERP effects (predictive easy/difficult vs. non-predictive) over time show 395 
an early posterior positivity followed by a late frontal negativity. Significant clusters with a p value < .05 396 
are denoted with horizontal lines in panels A and B. Shaded areas represent ± 1 SEM (68% confidence 397 
intervals). 398 

 399 

Experiment 2: Target Templates While Equating Target and Response Probabilities 400 

In Experiment 1, the pattern of behavioral data was suggestive of proactive and flexible template 401 

utilisation, resulting in larger performance benefits when target discrimination was difficult. 402 

Proactive memory-based expectation was also suggested by alpha attenuation and a CNV 403 

following predictive vs. non-predictive S1 objects. These predictive S1s allowed participants to 404 

prepare for the identity of the upcoming stimulus, while controlling for spatial and temporal 405 

expectations that were matched between the S1 objects.  406 

Although neural markers clearly signaled target anticipation, it was not possible to 407 

conclude that the neural effects were specifically related to the perceptual identity of the 408 

anticipated target. On average, task-relevant items (targets) were also more likely following 409 

predictive vs. non-predictive S1s, which may have led to differential motor anticipation, or states 410 

of attention. Because responses were only required to the target stimuli, during predictive S1 411 

trials observers could not only prepare for a task-relevant visual target, but possibly also for the 412 

associated motor response. The neural effects may thus reflect general task readiness (or 413 

“excitability”), rather than template-specific anticipation of visual identity. To rule out this 414 

potential interpretation, we designed Experiment 2 (Fig. 4).  415 
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In Experiment 2, we equated these other forms of anticipation by making S2 a task-416 

relevant stimulus on every trial. Specifically, participants were always tasked with discriminating 417 

S2, but only a subset of S1 stimuli predicted the identity of S2. Therefore, the only difference 418 

between predictive and non-predictive S1s was the likelihood of a specific target appearing. As 419 

such, differences between the S1 conditions must be attributed to proactive target template 420 

activation. Participants once again saw predictive and non-predictive S1s (Fig. 4B) which were 421 

equated for their spatial and temporal predictions, as well as motor affordances. Three stimuli 422 

served as S2, two of which were predicted by a subset of S1 stimuli and one of which was 423 

completely unpredictable. Participants responded to S2 in a 3-alternative forced choice (3AFC) 424 

design. To eliminate anticipation of specific motor responses, response mappings were random 425 

on every trial. Across the experiment, all three targets were equally probable and potential 426 

differences in the preparatory period can no longer be attributed to differences in target 427 

probability or response preparation. In Experiment 2, all trials had the same difficulty level, 428 

allowing us to focus exclusively on the central question of identity anticipation.  429 
FFigure 4. TTrial schematic and behavioral data from Experiment 2. (A) Schematic of an example non-430 
predictive trial in Experiment 2. Participants’ task was to always report the second S2 object. The 431 
paradigm is very similar to experiment 1 with the exception that participants must respond on every 432 
trial (i.e., each S2 is a target). Probabilities of each S2 target given the preceding S1 are shown in in 433 
panel (B). In (C) we see that there is a significant effect of the predictive S1 on error rates. Because this 434 
task was a delayed forced choice, reaction times were no longer informative. 435 

 436 

Behavioral Results 437 

To test for a benefit to the predictive S1s in the error rates, we used a paired samples t-test. As 438 

seen in Figure 4C, targets preceded by a predictive S1 were again detected more accurately 439 

(t(29) = 4.16, p < .001, d = .76). Because participants gave a 3AFC response after an imposed 440 

delay, reaction times were not considered informative of perceptual processing in Experiment 2 441 

and were therefore not analysed. 442 

 443 

EEG Results 444 

Alpha 445 

To assess the alpha attenuation following predictive vs. non-predictive S1s, we compared the 446 

time-frequency maps in the period between the onset of S1 and the onset of S2. As shown in 447 
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Figure 5A, we observed a significant cluster (p = .005), with a qualitatively similar profile (in 448 

terms of time range, frequency-range, sign, and topography) as in Experiment 1. The peak 449 

attenuation in this cluster was found at 11 Hz and 610 ms post S1. As in Experiment 1, this 450 

attenuation was associated with a predominantly posterior topography (Fig. 5A). When focusing 451 

on the predefined 8-12 Hz alpha band (Fig. 5B), we found a significant cluster (p = .01), which 452 

spanned a similar time range as in Experiment 1.  453 

 454 
 455 

FFigure 5. Alpha attenuation following predictive vs. non-predictive S1 in Experiment 2. (A) Time-456 
frequency results for posterior electrodes shows alpha attenuation following the predictive S1 relative 457 
to the non-predictive S1, with a peak negativity at 610ms post S1 at 11 Hz. (B) Time course of the alpha 458 
attenuation, averaged between 8 and 12 Hz. Vertical line at 1000 ms shows the onset of the target. 459 
Significant clusters with a p value < .05 are denoted with the black outline in panel A, and by the 460 
horizontal line in panel B. Shaded area represents ± 1 SEM (68% confidence interval). 461 

 462 

ERPs 463 

As in Experiment 1, we also investigated ERPs locked to the onset of S1 in the pre-defined frontal 464 

and posterior electrode clusters (Fig. 6). In the frontal electrode cluster (Fig. 6A), we again 465 

observed a CNV – a larger negativity following predictive S1s just before the onset of S2 (cluster 466 

p = .04). Like in Experiment 1, we also found a significant positive cluster in the frontal electrodes 467 

between about 300 and 450 ms (p = .01), which again likely involved a spillover from a more 468 

posterior effect (Fig. 6C). Indeed, in the posterior cluster (Fig. 6B), predictive S1s again elicited a 469 

larger positive potential from about 300 ms until around 550 ms, yielding a significant cluster (p 470 

= .001). 471 

The topographies again demonstrate how the effects of the predictive vs. non-predictive 472 

S1s develop over time and space (Fig. 6C), and revealed a qualitatively similar spatial-temporal 473 

progression as observed in Experiment 1. 474 
 475 

Figure 6. Posterior positivity and frontal negativity following predictive vs. non-predictive S1 in 476 
Experiment 2. A) ERPs locked to the onset of S1 and averaged across a subset of frontal electrodes. 477 
Predictive S1s show a late frontal negativity relative to non-predictive S1s. B) ERPs locked to the onset 478 
of S1 and averaged across a subset of posterior electrodes. The predictive S1s show a clear positive 479 
deflection from the non-predictive S1s. C) Topographies of the ERP effects (Predictive vs. Non-480 
predictive) show an early posterior positivity followed by a late frontal negativity. Significant clusters 481 
with a p value < .05 are denoted with horizontal lines in panels A and B. Shaded areas represent ± 1 482 
SEM (68% confidence intervals). 483 

 484 
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The tightly controlled identity-expectation manipulation in Experiment 2 also enabled us to 485 

investigate whether the proactive deployment of probabilistic associative-memory templates 486 

based on S1 improved neural processing of S2 during perceptual analysis (i.e., post S2 target 487 

onset). Unlike in Experiment 1, the S1 items were all followed by target items, thus equating 488 

motor demands and degree of preparation. Presentation duration of S2 was also equated. To 489 

test for qualitative changes in sensory processing, we applied linear discriminant analysis to 490 

decode the content of the two predictable targets in posterior electrodes when they were 491 

preceded either by a predictive or a non-predictive S1 (Fig. 7). Cluster-based permutations that 492 

considered the first 300 ms of target processing showed a single cluster of better decoding for 493 

predictable compared to unpredictable targets, though this did not survive cluster-correction (p 494 

= .09). When we considered only the peak decoding period of all targets (at 145ms; Fig. 7B) we 495 

found better decoding for predicted vs. unpredicted targets (t(29) = 2.89, p = .007). However, 496 

because this effect was not particularly strong (Fig. 7), we would like to present this as a 497 

tentative result in the hope that it will motivate further investigation, without further 498 

elaboration in the discussion. 499 
  500 

Figure 7. (A) LDA classification accuracy of S2 target A vs. S2 target B (in Experiment 2) when 501 
preceded either by a predictive (blue line) or non-predictive (gray line) S1. (B) Classifier accuracy at 502 
the peak classification time for the group average (145 ms) for both predicted and not predicted 503 
targets. To avoid circularity, the peak time was found based on the average of the predicted and 504 
not predicted data. LDA was performed in a time-resolved fashion on the baseline-corrected time 505 
series, using the topographical distribution across all posterior electrodes (as indicated in the inset) 506 
as the multi-variate data features. 507 

 508 

Discussion  509 

Our results provide evidence that identity templates based on probabilistic associative memory 510 

impact perception. Furthermore, these templates are associated with proactive states of 511 

attenuated alpha oscillations and the CNV, even when controlling for differences in spatial and 512 

temporal anticipation as well as response and target probabilities. 513 

 Our behavioral and EEG results build on and extend earlier work on memory-guided 514 

attentional orienting and perceptual identity templates in several ways. When considering 515 

memory-guided anticipation, we have focused here on perceptual consequences and the 516 

electrophysiological signatures of memory-guided predictions based on identity, as opposed to 517 
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anticipation in space and time (Awh et al., 2012; Chun & Jiang, 1998; Cravo et al., 2017; Goldfarb 518 

et al., 2016; Jiang, 2018; Olson & Chun, 2001; J. J. Summerfield et al., 2006). We have studied 519 

this in a context where the templates must be retrieved from complex probabilistic associations 520 

in  memory templates (Higuchi & Miyashita, 1996; Kok et al., 2014, 2012, 2017; Rainer et al., 521 

1999; Stokes, Thompson, Nobre, & Duncan, 2009; Turk-Browne et al., 2008, 2010) – rather than 522 

being explicitly provided (Carlisle et al., 2011; Chelazzi et al., 1993; van Driel et al., 2017) – and 523 

have focused specifically on the anticipatory electrophysiological substrates associated with such 524 

templates. 525 

 This work also expands upon prior work that has used similar paired-associate tasks as 526 

the one here (Brincat & Miller, 2015; Gallistel, 1990; Higuchi & Miyashita, 1996; Rose, Verleger, 527 

& Wascher, 2001; Stokes et al., 2014), but where the focus was on learning. In the current study, 528 

the focus was not on the learning of the S1-S2 associations, but rather on the exploitation of 529 

previously learned information in service of guiding ensuing behavior (see also Rainer, Rao, & 530 

Miller, 1999; Stokes et al., 2013, 2014), here in a demanding perceptual task with masked visual 531 

targets. Doing so, we report that participants are able to utilise learned identity associations to 532 

impact perception.  533 

A major empirical contribution of our study was to identify electrophysiological markers 534 

for the anticipation of identity-related informational content in the human brain that we discuss 535 

next in turn. 536 

 537 

AAlpha attenuation 538 

In previous work, alpha attenuation has been noted during anticipatory periods for both spatially 539 

and temporally predictable targets (Heideman et al., 2018; Rohenkohl & Nobre, 2011; Sauseng 540 

et al., 2005; Siegel, Donner, Oostenveld, Fries, & Engel, 2008; Thut et al., 2006; van Ede, de 541 

Lange, Jensen, & Maris, 2011; Worden et al., 2000; Zanto et al., 2011). In this context, alpha 542 

attenuation has been theorized to reflect engagement of sensory processing areas in 543 

preparation for a task-relevant event, in line also with the notion that alpha is inversely related 544 

to firing-rates (Haegens et al., 2011) and/or processing capacity (Hanslmayr, Staresina, & 545 

Bowman, 2016) of the underlying populations. In our results, we have shown alpha attenuation 546 
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when S1 specifically predicts the identity of an upcoming target over and above its location and 547 

temporal onset. Accordingly, we propose that the alpha attenuation also reflects engagement 548 

with visual processing areas to prepare a specific target template. As such, the alpha 549 

modulations reported here complement recent work showing that lower alpha power is 550 

associated with higher fidelity of stimulus-specific information (Barne, Lange, & Cravo, 2020; 551 

Griffiths et al., 2019; van Ede, Chekroud, Stokes, & Nobre, 2018). In this light, it is interesting to 552 

note that alpha-band oscillations were not significantly modulated by the anticipated perceptual 553 

difficulty in identifying the target, as might be expected from a pure “excitability” account (e.g. 554 

Benwell et al., 2017; Lemi et al., 2017; Romei et al., 2008, 2010; Samaha et al., 2017). Rather, at 555 

least in our task, the observed alpha attenuation appears to reflect anticipation of specific visual 556 

content related to target identity, though we note that visual content in our task entailed 557 

different shapes across objects, and thus included some spatial attributes.  558 

When templates are separated by space and time, template preparation has previously 559 

been associated with spatially lateralized contralateral alpha attenuation relative to the 560 

memorized location of the template (de Vries, van Driel, & Olivers, 2017; van Driel et al., 2017). 561 

Our findings complement this recent work by isolating template identity, while controlling for 562 

spatial attention associated with the template. Moreover, as emphasized earlier, we here show 563 

this in a context in which the template was not presented to participants, but had to be retrieved 564 

from long-term memory based on a known probabilistic association between S1 and S2.  565 

Snyder and Foxe (2010) demonstrated that when participants were cued to a relevant 566 

non-spatial feature-dimension of a target stimulus (color or motion), alpha power was relatively 567 

attenuated in the area coding for the relevant feature dimension (dorsal visual stream regions 568 

for motion and ventral visual stream regions for color). This complements the idea that alpha-569 

attenuation may serve as a general attentional mechanism in perception. However, because this 570 

previous work cued feature dimensions (e.g., colour) rather than feature values (e.g., red), it 571 

does not address whether alpha is also a relevant mechanism for expected identity or ‘template’ 572 

preparation.  573 

Interestingly, a previous study in which participants could prepare for a specific defining 574 

feature of a forthcoming target grating (Wildegger, van Ede, Woolrich, Gillebert, & Nobre, 2017) 575 
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found no evidence for modulations within the alpha-band. The apparent discrepancy with the 576 

current finding could be due to statistical variability (i.e. a false negative in previous work), or 577 

reflect crucial task dependencies. For example, our task utilised complex stimuli, memory 578 

associations, and targets that were always presented centrally whereas the previous work used 579 

simple orientations, symbolic cues, and uncertainty about target location.  580 

In the current work, we focused on the process of template-guided attention. The 581 

instantiation of the target template putatively involves a process of retrieval from long-term 582 

memory, possibly followed by storage in visual working memory and accompanied by visual 583 

imagery. Retrieval from long-term memory (Fukuda & Woodman, 2017; Hanslmayr et al., 2016; 584 

Staresina et al., 2016; Waldhauser, Braun, & Hanslmayr, 2016); storage, and prioritization of 585 

perceptual representations in working memory (Fukuda & Woodman, 2017; van Ede, 2018; van 586 

Ede, Jensen, & Maris, 2017); and visual imagery (Barrett & Ehrlichman, 1982; Salenius, Kajola, 587 

Thompson, Kosslyn, & Hari, 1995; Slatter, 1960), have all previously been associated with 588 

attenuation of alpha oscillations. Our findings are thus in line with this large body of prior work. 589 

In contrast to this work, in the current study, these individual processes were never explicitly 590 

tasked to the participants. Rather, here, these processes may constitute the natural chain of 591 

events that support adaptive memory-guided perceptual anticipation. 592 

 593 

EERPs 594 

In addition to the alpha effects, Experiments 1 and 2 each also revealed significant ERPs 595 

associated with target-identity anticipation. Moreover, like the alpha modulation, these 596 

potentials did not differ significantly between the predictive-easy and difficult S1s in Experiment 597 

1. The two ERP effects consisted of a CNV and a late posterior potential. Both of these have been 598 

previously found in associative learning tasks (Rose et al., 2001; Stokes et al., 2014). However, in 599 

this previous work, S1 predictions were coupled to response probabilities, a confound we ruled 600 

out in Experiment 2.  601 

The CNV is a classic signature of temporal and response anticipation (Donchin, Tueting, 602 

Ritter, Kutas, & Heffley, 1975; Walter, Cooper, Aldridge, McCallum, & Winter, 1964), and is likely 603 
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to reflect the anticipation of the target – here shown to be strengthened by foreknowledge of 604 

the identity of the ensuing target.  605 

Our late posterior positive potential may relate to the processing of S1 when it predicts a 606 

specific target, or serve as a link between the S1 and the S2 item. The exact functional 607 

contribution of the late positive potential in our task is difficult to pinpoint. Its posterior 608 

topography and time course are compatible with a few different possibilities. Identification of 609 

the S1 as a relevant, predictive stimulus may have triggered a P300, which has a long history as a 610 

marker of stimulus relevance or meaning (Johnson, 1986; Polich, 2007; Squires, Squires, & 611 

Hillyard, 1975). Alternatively, it may have reflected the process of recalling the associated target 612 

(Donaldson & Rugg, 1999), therefore providing a link between S1 and S2. A similar potential has 613 

also been noted during the orienting of spatial attention (Brignani, Lepsien, Rushworth, & Nobre, 614 

2009), raising the possibility of an analogous mechanism for orienting attention to identity-615 

defining stimulus attributes. 616 

Importantly, in Experiment 2, both the predictive and non-predictive S1 indicate that a 617 

task-relevant target would appear in 1000 ms in the center of the screen, and all trials required a 618 

response. The only difference was that the predictive S1 indicates which item is likely to appear. 619 

Accordingly, this provides compelling evidence that these ERPs, like the alpha attenuation, are 620 

sensitive to the expectation of the particular identity of the forthcoming item.  621 

It remains to be investigated whether the effects shown here are contingent on 622 

knowledge of the location and timing of an upcoming event. By design, space and time were 623 

always reliable in the current work. While contrasts with non-predictive S1s allowed us to 624 

eliminate any neural correlates that were attributable to purely spatial and temporal predictions, 625 

we cannot rule out that the observed modulations might still reflect the interaction between 626 

identity-based anticipation and the known spatial and temporal attributes of the anticipated 627 

stimulus. That is to say, it is of yet unclear whether the same results would be obtained for 628 

identity-based predictions in the absence of spatial and temporal predictions. At the same time, 629 

of course, in the real world, spatial, temporal, and identity-based predictions are often bundled. 630 

 631 

IInteraction between predictions and perceptual difficulty  632 
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In experiment 1 we found a significant interaction between S1 predictiveness and target 633 

difficulty (easy or difficult) for both error rates and reaction times. Interestingly, we did not find 634 

neural evidence for such an interaction in the identified alpha attenuation or ERPs during the 635 

period between S1 and S2. One may have expected that a more difficult target would call for a 636 

stronger activation of the perceptual template. However, our data do not speak to this 637 

conclusion. On the one hand, we cannot rule out differences in the extent of template pre-638 

activation that could not be detected with our methods. There may be other neural correlates of 639 

perceptual identity preparation that do depend on expected target difficulty, which we were 640 

unable to measure. On the other hand, the results invite us to consider whether and how similar 641 

levels of template activation may result in differential performance benefits. It is possible that 642 

the same perceptual templates will be more effective when incoming stimuli are harder to 643 

perceive. In this scenario, the consequences of pre-activation of relevant neuronal populations 644 

may critically depend on the strength of neuronal activity triggered by incoming stimulation, 645 

playing a greater faciliatory role when incoming stimulation is weaker or more ambiguous.  646 

 647 

CConclusion 648 

Taken together, our results suggest that proactive preparation for the identity of a target – 649 

based on successive associations – impacts perception and is accompanied by the attenuation of 650 

alpha oscillations and modulations of ERPs, including the CNV. We here demonstrate this while 651 

matching spatial and temporal predictions, as well as target probability and response demands. 652 

While isolating identity anticipation has proven instrumental to our aims, we should also not 653 

forget that, in natural behavior, memory-based anticipation is often multifaceted – affording 654 

concurrent anticipation of the what, where and when of upcoming percepts. In future studies, it 655 

will be interesting to consider systematically the dynamic interplay and potential synergies 656 

among each of these different dimensions of memory-based perceptual anticipation. 657 

  658 
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