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Abstract

Whilst the role of the Disrupteni-Schizophrenia 11 SC1) gene in the aetiology of majarental illnesses is
debated, the characterisation of its function lends it credilititg candidate. A key aspect of this fiora!
characterisation is the determination of the role of commanspronymous polymorphisms on normal
variation within these functionhe common allele (A) of thBISC1 SNPrs821616encodes a serine at the
Ser704Cys polymorphism, and has been showindoease the phosphorylatiasf extracellular signal
regulated protein Kinases 1 and 2 (ERKMich stimulate thgphosphorylation ofyrosine hydroxylasethe
ratelimiting enzyme for dopamine biosynthesi&e therefore set out to test the hypothesis HumanA
(serine)homozygotes would show elevated dopamine synthesis capacity companrefividuals cysteine

hetero/homozygotes (AT or TT genotypfyr rs821616. F]-DOPA PET was usedto index striatal

dopamine synthesis capacig the influx rate anstantkKi® in healthy volunteer®ISC1 rs821616serine

homozygotes (N=46) anldealthy volunteer®ISC1 rs821616ecysteinecarriergysteine hetero/homozygotes

(N=56), matched for age, gendegthnicity and using three scanneme found DISC1 rs821616seine
homozygotes exhibited a significantly higher striataki® compared to eysteine—ecarriery/steine
hetero/homozygote@-value=0.012) explaining 6.4% of the variance (partial eta squared=0.064)n@og fi

is consistent with its previousssociation vih heightened activation &RK1/2 which stimulates tyrosine
hydroxylase activityfor dopaminesynthesis This could be a potential mechanism mediating risk for
psychosislending further credibility to the fact that DISC1 is of dtional interest in thaetology of major

mental iliness.
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Introduction

The dopamindwypothesis has been a leading theory underlying the neusgliof schizophrenia for
the last four decad€g, 2). The hypothesisvas initially basedn evidence showinghat antipsychotic
medications blocklopaminereceptorg3-5) and that drugs increasimppamindevelselicit psychotic
symptoms in healthy peopl-8) and peoplewith schizophrenia (9, 10Using [**F] fluoro-3,4-
dihydroxyphenyl-Lalanine (FDOPA) Positron Emission TomograpliRET), increasedresynaptic
dopaminesynthesis capacitilas been found in schizophrertiel), peoplewith prodromalpsychotic
symptomg(12, 13)andthosewith clinical progression to psychogis4). Whilst a substantial &y of
evidence supports thele of increasegresynaptic dopamingynthesis capacitiy the patloaetiology

of psychosis, little is known about how genétictorsaffed the implicateddopamine syste(s) (15).

The Disrupted-in-Schizophrenia 1 (DISC1) gene was originallydiscoveredat the breakpoint of a
balanced t(1;11}g42;g914.3)translocation in a Scottish family with a highevalence of psychiatric
disordes including schizophreni§l16-18). Further evidence for knk betweenDISC1 andpsychotic
andaffective disorderemerged from théollow-up of familiesdisplaying rareDISC1 mutatiors (19,
20) and hrgefamily-based studiem the population isolate dfinland (21-23) although large meta
analysis of familieslid notobserve linkagat this region(24). Furthermoreevidencerom individual
popuation-based cohostasbeen inconsistent (25, 2@8ading toongoingdebateon its involvement
in schizophrenia (27, 28Whilst this controversyremains unresolved, theie value in seeking
convergent evidence via studies elucidating the functional impabeafeneand its variation29-
32). DISC1 is ascaffold protein involved in a wide range wéuronal functions including near
signalling (30, 33) Preclinical studies show thabISC1 variant models exhibit increased
amphetaminénduced dopamine release in thentral striatum (see (34-37) reviewed in (38),

indicating thaDISC1 variations mightffect presynaptic dopamisgnthesis capacity
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One of the most studiddl SC1 single nucleotide polymorphisiiSNF) is rs821616vhich is a non
synonymous mutation leading tioe translaon of aserine(A allele) or acysteine(T allele)at codon
704 in exon 11(39). Importantly, this polymorphisnrepresentsherefore not only a vatian at the
genetic sequence levélut also at the protein sequence level DSCL At a molecular level,
Hashimoto et al.(2006) foundthat overexpression of thaerine variant of codon 704by viral
transduction resulted in a significant increasphnsphorylatedRK1/2, the more biologically active
form (40). ERK1/2in turnregulate the state ofphosphorylation of tyrosine hydroxylasée rate
limiting enzymefor dopamine biosynthesito increaséts activity and subsequent dopamine synthesis
by up to twefold (41-44). Dopamine is synthesized by converting first tyrosine into dihydroxyyhe
L-alanine (DOPA) by tyrosine hydroxylase, and second dihydroxyphergfanine (LDOPA) into
dopamine by aromatic acid decarboxyla@®). [‘°F]-DOPA PET signalreflects aromatic acid
decarboxylase functioand dopamine storage capac{gb), but not directly tyrosine hydroxylase
function. However, it should be noted that 1) tyrosiyelrbxylase is the rate limiting step for
dopamine synthesis capacit$3) and 2)the topological distribution of th¢'®F]-DOPA signal
correlates highly with tyrosine hydroxylase immunostairimainilaterally 6 hydroxydopamine (6
OHDA)-lesioned rats,thus indicating that thg®F]-DOPA signal is strongly influenced by

endogenous dopamine formed by tyrosine hydroxylase (46).

In summary, peclinical findings suggesthat the Ser704Cysvariaion affects dopamine synthesisyb
regulating ERK1/2 and its control ovrosine hydroxylase activitydowever, it remains unknown
whetherthe Ser704Cywariationis associated with altered dopamine synthesis inams.The aim of
this studywasthereforeto test thenypothesighat serinehomozygotesvould exhibit increasedtriatal

dopamine synthesis capacityrelative to eysteine—carriergysteine hetero/homozygotes
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Results

Demographics, scan parameters includihg injected dose ansubstance use charagstics are

shown in table 1 A total of 46 serine homozygotes and 58ssteine—ecarrierysteine

hetero/homozygotesvhich encompass 45 heterozygotes and 11 cysteine homozygotes) were included

in the study.The gnotype frequencigghown in table 1¥id not significantly deviatérom Hardy-
Weinberg equilibrium (x2 =1.422 with p=0.233), with aMinor Allele Frequency (T allele) of 0.335.
Age (yea) andKi® (1/min) in the wholestriatumwere normally distributedcaoss the two groups
whereas injected dog®IBq) was not.There was no significant difference in age between groups
t(100)=1.588, p=0.115 (independentes) and no significant difference in injected dose p=0.408
(Mann Whitney test)Levene’s test indicatl no difference between the variances in the two groups,
F=0.398, p=0.529. The univariate ANCOVA showed that the main effect &fl®&L SNP rs821616
on the dopamine synthesis capacity in the whole striatum was sagmijfi (1,96) = 6.555, p=0.012,
pattial eta squared =0.06Zhe effects of the covariates were: for scankét,96)=16.573, p<0.01,
partial eta squared =0.1474Age, F(1,96)=1.056, p=0.307, partial eta squared =Q.0ddnder,
F(1,96)=0.114, p=0.736, partial eta squared=Q.G8knicity, F(1,96)=0.061, p=0.805, partial eta

squared=0.001.
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Discussion

In line with our hypothesis, we found that participamtth-the-AA-genotypegerine homozygotes

(AA genotype) foref the Ser704Cys function8lISC1 polymorphism exhibited a significantly greater
Ki® valuein the whole striatum, indicating greater dopamine synthesis capaaifyaced taysteine

hetero/homozygote$AT or TT genotypef—{eysteine)—earrietsThis result is in accordance with

preclinical evidence showing that the serine T&C1 varant increases the activity dERK1/2,
which in turn enhances the phosphorylation of tyrosine hydroxylase, tHeniéiteg step in dopamine

synthesig41, 47).

Limitations

The main limitation of this study wabka we use data fromthree different PET scanners, which
could adderrorvariance However scanner wasicluded as @ovariate to adjust for thigurthermore,
the effect of the Ser704Cys polymorphism remained signifivaen we only included subjedi®m

PET scanne (F(1,28) = 5.273, p=029 (=16 eysteine-carrierysteine hetero/homozygofds=17

serine homozygot®s but not PET scanner anly (F(1,30) = 0766 p=0388 (N=19 eysteine

carriergysteine hetero/homozygofd¥=16 serine homozygotesgndPET scanneB only (F(1,29) =

0.426, p=0.519(N=21 eysteine—carrierysteine hetero/homozygotdd=13 serine homozygotes))t

is important to recognise that we measured the final step in the syrdhdsjzamine, the conversion
of L-DOPA into dopaminevia aromatic acid decarboxylase (AADMHowever, the parameter
measuredcould be affected by otherariables including the uptake &fDOPA into the brain,
although this should be controlled for by the reference regiwh there is n@ priori reason to
consider that this should be affected the DISC1 protein Importantly, his polymorphism was
chosen based on a specffitor hypothesisAlthough there was evidence to reject the null hypothesis,

the pvalue would not survive genomgde correction and #refore the result requires replication.
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Implicationsfor mental disorders

The Ser704Cys polymorphisimas been associated with schizophravita an odds ratioin therange

of 1.3—4.18 in various populatienincludingEuropear(48), mixed EuropearAfrican-American(49),

and Chinesddan (5052). Inconsistencies have been found, with some studies indicating increased
risk associated whitthe A allele (sering48, 51) whilst othersthe T gysteing allele (50, 52)andno
association found25) mainly in the dpanese populatio(b3-55). A recent metanalysis haslso
reportedassociatiorof the A (serine) allele witlschizophrenian Chinese (OR1.338) and Japanese
populatiors (OR=1.524)as well as in the overatiixed racesample(56). The inconsistencies in these
results might be due to different ethnic populatidhshould be noted that ever expanding studies of
European ancestry poptilon level genetic variants in schizophrenia continually demonstmate n
significant associations at the entire DISC1 logai 58) althoughthere is evidence implicatiriipe
DISCL1 interactophosphodiesterase 4BDE4B as a genomwide significant single gene locus an
recent largeschizophrenia genomeide association studyGWAS) (58). Whilst GWAS havemade
crucial advances in the understandingtioé genetic of schizophrenithe biological mechanisms

directly underlying the disorderemain yet poorly elucidated(59-61). In this contextthe DISC1

protein has been suggested asialogical candidateof interest for investigating molecular

mechanisms of mental ilinesses at the protein levels (33,62). Beyond studies of dichotomous

diagnoses,he serinallele has alsdeenassociated withnicreased risk for poor concentration among
Korean patients with schizophrenia (6Breasedeverity ofpositive symptomsand hallucinations in
Europeanpatientswith FirstEpisode Psychosi64) and ncreased lifetime severity of delusions in
Europearpatients withschizophrenig65). A potential mechanism for the increased risk could be by
dysregulating the control of dopamit®lead b increased dopamine synthesigdingsin prodromal
populatiors showthat increased dopamirsynthesisis associated wh increased risk for psychosis
(12, 13) Thedifference in dopamine synthesis capacity weeoles here between serine homozygotes

andcarriers of thelternative alleléas much smaller than the differences seen in at risk sul{jbtts
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66). It is thereforelikely that the Ser704Cys variant interacts withestgenetic changeto mediate

risk, potentially byaffecing dopaminesynthesis

The fact that the common serine allele has been described as thelaliskisacompatiblewith
schizophrenia GWAS, in whiclapproximately50% of the implicated index SNRee the more
common alleleg67). At the population levelhe genetic susceptibility &chizophrenias caused by a
few rare variantof high penetrance (mainly copy number variaatsl translocations) anchany
common variants of small penetranc&Psand variable number of tandem repg468). As each
SNP very minimally impets sclizophrenia risk and is compatible with modern models of natural
selection(67), it is expeted that other genetic factase needed, in the same individual, to increase
theliability to a point of schizophrenia osisFor examplethe Ser704Cysite affectanteraction with
nuclear distribution elemeitike 1 (NDEL1)and its homolodNuclear Distribution Element 1 (NDE1,
also known as NudE)p9, 70), andhere is evidence faan interaction betweeNDEL1 rs1391768
and the Ser704 allele and tN®E1 rs3784859 and the Cys704 allele on the risk for schizophrenia in
European participanté/1). Ser704Cys is also thkinding site for proteis such askendrin (also
known as pericentrin PCNT) ariéericentriolar materiall (PCM1) (72), which have been both
described as risk factor genes fwhizophrenia (73). Furtheore, environmental factors such as
exposure to psychosocial stress may also interact withS#r@04Cyspolymorphism toaffect
dopamine function and mediate risk for schizophreii&). Interestingly, using a tranegic
expression of truncated human Discl protein with dominagttive effect, Niwa et al. have shown
that an interaction betweeDISC1 and stress exposure, as a 3 week social isolggaradigm,
increased dopamine release after amphetamine chall@geand inducedalterations in DNA

methylation of the tyrosine hydroxylase ggré).

Evidence also suggests that the Ser704Cys polynsrpisi a risk factor foaffective disoders. The
cysteine allele has been associated with major depression in Japaneagqmo@dl), and shown to

form a protective haplotype fdripolar spectrum disordewvith two othersDISC1 SNPs(rs1411771



141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

and rs98989)in Finnish populatior{75), whereas a higher serine allele rate has been fougduth
Indian population with bipolar disord€76). Interestingly, increased dopamine synthesis capacity is
seen m bothmania(77) and bipolar psychosig8), whilst major depressiowith affective flattening

is characterized by @ecreased synthesis capagit9, 80).

The Ser704CysSNP has also been shown to have a functional impadheatrain level (39).

Compared to healthyeysteire-carierscysteine hetero/homozygofeserine homozygotesdisplay

increasedfor the same level of performance, thus putatively inefficiprejrontal corteactivationin
the left middle and left superior frontal gyri and in the homologous riglersurgdrontal gyrus, the left
inferior frontal and cingulate cortex, the thalamus and the caudate nutlaugerbal fluency task
(81), as well asan effect on thalamigrefrontal connectivity(82). Ser704Cys SNP haaso been
shown to affect activation durindeclarative memoryask with inconsistent finding€allicott et al
(48) founddecreased activation bilaterally in the hippocampal formatioring a declarative memory
taskand increased activation bilaterally in the hippocampal formaticen Nback task in Ser704

homozygotes controls comparedeigsteinecarriergysteine hetero/homozygoteghereadi Giorgio

et al (83) found increasedhippocanpal formation/dorsolateral grental cortex coupling during
memory encodingn a declarative memory task serinehomozygotes @mpared to healthgysteine

carriergysteine hetero/homozygotes

In summary, ouresultsprovide unprecedentaareliminary evidence thddISC1 Ser704Cys has an
impact on the dopamine synthesis capaditya large smple of 102 healthy volunteer§urther
studies should aim 4t) replicating this result initferent cohors; 2) invesigating potential epistatic
interactions wittDISC1 and other risk gene&eneticstudies based on molecular evidence could help
identify the molecular mechanism that undeslithe patho&tiology of dopamineelated disordes

such as psychotic disorders, and help identify npetential treatment targe{15).
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Conclusion

We foundthat the serine allele oDISC1 Ser704Cys (rs821616yas associated witkignificantly
higher striataopamine synthesisapacity, consisenty with its previous association with heightened
activation of ERK1/2 which stimulates tyrosine hydroxylase activitfor dopaminesynthesis This
implicates the DISC1 polymorphism in alteringa psychosis relevarmnechanisnin the brain i.ethe
facilitation of greater dopamine synthesis capac#jthough, this effect of rs821616 may be of too
small effect to be identified in populatidrased studies of end state diagnoses at their current large
size, it continues to implicate the functional role of O1SFirstly by highlighting the role of this
polymorphism at this gene in creating variation within the normal funatiooi the brain, but also by
indicating this function as a potential mechanism through which other rdaendial mutations for

majormental illnesses could disrupt functioning and increase risk to tleesestating disorders.
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178 Material and M ethods

179 Overview

180 All participants gave informed written consenttake part after full description of the studyll

181 studies wer@pproved by the Biitutional review boardndthelocal research ethics committee

182 Participants

183 Participants were ceuited via advertisement ilocal media based in Londo®ne hundred and
184 twenty-threeparticipantsunderwent a*fF]-DOPA PET scankor all participants thiclusion criteria
185 were 1)age above 18 years; 2) capacity to give written informed cariBeatexclusion criteria were
186 1) any current medical conditiors history of medical condition (past minor sktfiting conditions
187 were permitted); 2history ofa psychiatric disorder as determined by the Structured Clinicavikter
188 for DSM-IV Axis 1 Disorders, Clinician Version (SCH3V) (84);, 3) history of substance
189 abuse/dependence as determined by the Structured Clinical Inteovi®®fV Axis 1 Disorders,
190 Clinician Version (SCIBCV) (84), 4) history of head injury with a loss of consciousness; &Bmily
191 history of any psychotic disorder in firsir seconebegree relatives; 6) contraindications to positron
192 emission tomgraphy (PET) scanningsignificant prior exposure to radiation, pregnancy or breast
193 feeding). All participants provided urine samples prior to the scan to scieemrug use and
194 pregnancy test in womergix participantswere excluded due tpositive urineTHC screening, 12
195 participantswere excluded to contaminatiasf samplesand 3 participantswere excluded due to
196 current psychotropic medicatiomse. This resulted in the final inclusion ®02 participants(46
197 female$56 malesage: 30.29.3 years (mearStandard Deviation SD)Both scanning anénaging
198 analysis were done blind to the genotype status.

11
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[8F]-FDOPA PET

PET data were acquired using three different PET scarfPEfisscanner 1 was &#CAT HR+ 962
PET scanner (CTIl/Siemens, Knoxville, Tennessee). The dynamic imagesegeiredn 3D mode
with an axial field ofview of 15.5 cm and reconstructed using filterback projection. PET scanners 2
and 3 weretwo Siemens Biograph HiRez XVI PEIT scanner (Siemens Healthcare, Erlangen,
Germany) at ImanovaCentre for Imaging Sciences. PET scanner 1 and PET scarhewePe
identical with the only exception of the axial field of view: 16.2 csn2l1.6 cm respectivelylhe
dynamic images weralso reconstructed using 8D filtered backprojection algorithm(discrete
inverse Fourier transfornDIFT) with a 128 matrix, a zoom of 2.6 andsenm isotropicGaussian
smoothing Participants were scanned at various times of theStaye of the imaging data has been
included in prior reports but not for genetic analy85-88).For attenuation and modbhased scatter
correction,a 10 min transmission scan was performed using aMIE) cesium137 rotating point
source for the ECAT HR+ 962 PET scanner and a computed tomography (effective
dose=0.36nSv) for the Siemens Biograph HiRez XVI PET scanners were acquired prtoreach
PET scan. Experimental protocol was consistent for all the pentitsi(85). Participants were asked
to fastand abstain from smoking from midnight on the day of the ssaobacco us has been
associated with increased striatal dopamine synthesis caf88ityalthough this has not been
replicated(85). Oral doses of carbidopa (150mg) and entacapone (400mg) were administrated 1hour
before scanning. While the firseduces the peripheral metabolism of the trg@é), the latter
minimizes the formation 6 radiolabeled FF]-FDOPA metabolites, which can cross the biboain
barrier (91). Head movement was monitored and minimized with a light head. $trparticipants
moved extensively during the acquisition or got out of the scanner a secemaatitin correction
image was acquired at the end of the acquisitREET data were acquired dynamically during 95
minutes aftebolusinjection of the radioactive tracef’ff]-DOPA through a cannula sertedinto a

vein. Dynamic data were binned into 26 frames (PET scanner 1) and 32 framesgR&&er 8cand 3).



224 Image Analysis

225 Head movement was corrected using a friaypdrame realignment and denoising algorit(82) with

226 a level 2 order 64 Battleemarie wavelet filter applied on the noattenuatiorcorrected dynamic
227 images. These images were used because they include a significant scalp signered to
228 attenuatiorcorrected image€93). Frames were realigned to a referefreene corresponding to the
229 frame with the highest number abunts, i.e. obtained 7 minsté€for the ECAT HR+ 962 PET
230 scannel€Tl/Siemens, Knoxville, Tennesgeend 17 minutegfor the Siemens Biograph HiRez XVI
231 PET-CT scannersSiemens Healthcare, Erlangen, Germaafigr the radiotracer injection using a
232 mutual nformation algorithm(94). The transformation parameters were then applied to the
233 corresponding attenuatiarorrected dynamic images. These realigned frames were summated,
234 creating a movemertorrected dynamic imadeom which to extract the Time Acflity Curves (TAC)
235 for graphical analysis quantificatio®tandardized regions in Montreal Neurologic Institute (MNI)
236 space were defined in the whole striatum delineated as previouslybddsto create a Region of
237 Interest (ROI) mag95) and in the cerebellum using tipeobabilisticMartinez atlas (95, 96) The
238 cerebellum was used as a reference regisnit is largely devoid of dopaminergic neurons or
239 projections(45). A nonlinear transformation procedure on SPM8 (http://www fil.ionaeclik/spm)
240 was used to normalize the ROI map together with ¥ig-DOPA template to each individual PET
241 summation image, in order to place the ROtoaatically on individual fF]-DOPA PET dynamic
242 images. Influx constarK® value, (min') for the whole striatum was calculated relative to uptake in
243 the reference region using a graphical apprq8@h a methodvhich has been shown to have good
244 reliability (95).

245 Genetic analysis

246 DNA was extracted from blood or cheek swabs using standatidods(98). Genotyping of the

247 rs821616 AT SNP, was performed by KBioscience (Herts, UK, http://www.kbioscience.co.ing us
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a competitive allele specificdymeraseChain Reactionsystem (CASP). Quality control procedures

included negative control (water) wells and duplicate wells.

Statistical analysis

The normality & the distribution for allvariables was examined using the §ha Wilk test,
inspection of QQ plots and skewness and kurtosis values within range @ Homogeneity of
variance was assessed with Levene’s Test for Equality of Variafweslpha threshd was set at
0.05 (twotailed) for significance for all statistical comparisorStatistical Package for the Social
ScienceqSPS$ version 24 was used for all statistical analysis (IBM, Armonk, N.Xl)data are
shownas meatiSD. An univariateanalysisof covariance (ANCOVA) was performed on 102 healthy
controls, with the DISC1 SNP Ser704Cys variation (serine homozygotes versusysteine

carriergysteine hetero/homozygojeas the independent variabl&i® in the whole striatum ashe

dependentvariabke and agegender ethnicity (table 1) and the three PETscannes separatehas
covariatesas these variables have been previously found to influence dopamihessy capacit{99,
100). Effect sizes are reportesls partial eta squarethdependent testand MannWhitney test were

used to compare age and injected dose.
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Legend to Figure

Figure 1: Mean (SEMtriataldopamine synthestapacity Ki* value, min') in DISC1 rs821616:ysteinecarriergysteine

hetero/homozygot@ T and TA, N=5¢ andDISC1 rs821616serine homozygote®\, N=46). Dopamine synthesis

capacity was significantly increased in serine homozygotes a@upvitheysteine-carrierysteine hetero/homozygotés

(1,96)%6.555, p=0.012
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Table

Tablel DISC1 SNP rs821616

Total AT-and-FFcysteine serine AA Pvalue

heter o/homozygotes homozygotesea
carriers rriers

Total genotype counts | 102 45(AT)and 11 (TT) 46 (AA)
Females 46 21 25
PET scanner 1 35 19 16
PET scanner 2 33 16 17 0.549"
PET scanner 3 34 21 13
Age 30.2 (9.3) 31.5(9.9) 28.6 (8.4 0.115
Tobacco smoking 75 43 32
status (nonsmoker) 0.411"
Tobacco smoking 27 13 14
status (smoker)
Radioactivity injected 157.7 (16.2) 156.6 (16.2) 159.2 (16.4) 0.529
(MBq)
White European 70 35 35
Black British/other 22 15 7
Asian British/other 5 3 2
Mixed ethnicity 5 3 2 0.503"
All data + SD.

"Independent t test
i MannWhitney U test
il Pearson ChBquare
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