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Abstract Affective bias, the tendency to differentially prioritise the processing of negative

relative to positive events, is commonly observed in clinical and non-clinical populations. However,

why such biases develop is not known. Using a computational framework, we investigated whether

affective biases may reflect individuals’ estimates of the information content of negative relative to

positive events. During a reinforcement learning task, the information content of positive and

negative outcomes was manipulated independently by varying the volatility of their occurrence.

Human participants altered the learning rates used for the outcomes selectively, preferentially

learning from the most informative. This behaviour was associated with activity of the central

norepinephrine system, estimated using pupilometry, for loss outcomes. Humans maintain

independent estimates of the information content of distinct positive and negative outcomes which

may bias their processing of affective events. Normalising affective biases using computationally

inspired interventions may represent a novel approach to treatment development.

DOI: https://doi.org/10.7554/eLife.27879.001

Introduction
When learning about and interacting with the world, individuals vary in the extent to which their

beliefs and behaviours are influenced by the events they experience. Often this variation displays an

affective gradient with some individuals being more influenced by positive and others by negative

events. For example, many people display an optimism bias, updating their beliefs to a greater

extent following positive than negative outcomes (Sharot and Garrett, 2016). The opposite effect,

a tendency to be more influenced by negative events, has been argued to cause illnesses such as

depression and anxiety (Mathews and MacLeod, 2005). However, relatively little work has explored

why individuals might develop affective biases in the first place. This question is of particular impor-

tance as understanding the mechanisms which lead to the development of affective bias is an essen-

tial first step in the development of novel treatments designed to alter this process and thus reduce

symptoms of depression and anxiety. One way of answering why individuals develop affective bias is

to consider when affective biases might be the appropriate way to think about the world. In this

study we draw on recent advances from the computational neuroscience of learning to investigate

whether affective biases may be understood in terms of how informative an individual judges an

event to be. Below we describe the conceptual framework of this proposal and then suggest how

this may be used to account for the occurrence of affective biases.

Recent computational work has demonstrated that individuals’ expectations are influenced more

by those events which carry more information; that is, those events which improve predictions of

future outcomes to a greater degree (Behrens et al., 2007; Browning et al., 2015; MacKay, 2003;

Nassar et al., 2012). One factor which influences how informative an event is is the changeability, or

volatility, of the underlying association which is being learned. For example, imagine trying to learn

what your colleagues think about your performance at work, based solely on their day-to-day feed-

back. One colleague seems to have a stable positive view of you, complimenting you on your work
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on 80% of the occasions you meet and never increasing or decreasing this frequency. In this case,

each particular event (being complimented or not) provides little new information about what your

colleague thinks about you, as you will always have an 80% chance of being complimented the next

time you meet. In contrast, a second colleague’s appraisal of you seems to be more changeable,

with periods when they think highly of you and compliment you regularly and others when they

rarely compliment you at all. In this case each event provides more information; if you have recently

been complimented by this colleague it is more likely that their opinion of you is currently high and

they will compliment you the next time you meet (Figure 1B). When learning what your colleagues

currently think about you, you should be more influenced by whether the second, more volatile, col-

league compliments you or not, because this provides more useful information than the behaviour of

the stable colleague.

Figure 1. Task structure. (A) Timeline of one trial from the learning task used in this study. Participants were presented with two shapes (referred to as

shape ‘A’ and ‘B’) and had to choose one. On each trial, one of the two shapes was be associated with a ‘win’ outcome (resulting in a win of 15 p) and

one with a ‘loss’ outcome (resulting in a loss of 15 p). The two outcomes were independent, that is knowledge of the location of the win provided no

information about the location of the loss (see description of panel C below). Using trial and error participants had to learn where the win and loss were

likely to be found and use this information to guide their choice in order to maximise their monetary earnings. (B) Overall task structure. The task

consisted of 3 blocks of 80 trials each (i.e. vertical, dashed, dark lines separate the blocks). The y-axis represents the probability, p, that an outcome

(win in solid green or loss in dashed red) will be found under shape ‘A’ (the probability that it is under shape ‘B’ is 1-p). The blocks differed in how

volatile (changeable) the outcome probabilities were. Within the first block both win and loss outcomes were volatile, in the second two blocks one

outcome was volatile and the other stable (here wins are stable in the second block and losses stable in the third block). The volatility of the outcome

influences how informative that outcome is. Consider the second block in which the losses are volatile and the wins stable. Here, regardless of whether

the win is found under shape ‘A’ or shape ‘B’ on a trial, it will have the same chance of being under each shape in the following trials, so the position of

a win in this block provides little information about the outcome of future trials. In contrast, if a loss is found under shape ‘A’, it is more likely to occur

under this shape in future trials than if it is found under shape ‘B’. Thus, for the second block losses provide more information than wins and

participants are expected to learn more from them. (C) The four potential outcomes from a trial. Win and loss outcomes were independent, and so

participants had to separately estimate where the win and where the loss would be on each trial in order to complete the task. This manipulation made

it possible to independently manipulate the volatility of the two outcomes.

DOI: https://doi.org/10.7554/eLife.27879.002
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Within a reinforcement learning framework, the influence of events on one’s belief is captured by

the learning rate parameter, with a higher learning rate reflecting a greater influence of more

recently experienced events (Sutton and Barto, 1998). Humans adjust their learning rate precisely

as described above, using a higher learning rate for events, such as those occurring in a volatile con-

text, which they estimate to be more informative (Behrens et al., 2007; Browning et al., 2015;

Nassar et al., 2012). The neural mechanism by which this modification of learning rate is achieved is

thought to depend on activity of the central norepinepheric system (Yu and Dayan, 2005), with

increased phasic activity of the system, which may be estimated using pupilometry (Joshi et al.,

2016), reporting the occurrence of more informative events (Browning et al., 2015; Nassar et al.,

2012) and acting to enhance the processing of these events (Aston-Jones and Cohen, 2005).

This computational framework provides an overarching logic for when an individual might

develop an affective biases; individuals should bias their processing towards those affective events

that they estimate to be most informative. As well as providing a novel reformulation of why affec-

tive biases may develop, this framework also suggests a potential novel method for modifying such

biases; for example, if a higher estimate of the information content of negative relative to positive

events leads to negative affective bias, interventions which redress these estimates should also

reduce the negative bias.

However, a number of critical questions concerning this account remain outstanding. Firstly, no

previous study has demonstrated that humans maintain separate estimates of the information con-

tent of positive and negative events. While a number of studies have examined the effect of volatility

on learning (Behrens et al., 2008; Behrens et al., 2007; Browning et al., 2015; Nassar et al.,

2012), they have all utilised only one type of outcome (i.e. rewards or punishments) and thus their

results could be accounted for by learners maintaining an estimate of how volatile the general envi-

ronment is and learning more rapidly to all outcomes in those environments they judge to be more

volatile, rather than estimating the information content of specific outcomes. We tested whether

these specific estimates were maintained using a novel learning task (Figure 1) in which participant

choice led to both positive and negative outcomes, with the volatility of the outcomes (and therefore

their information content) being independently manipulated in separate task blocks. Secondly, for

estimates of the information content of positive and negative events to lead to the development of

affective biases, the estimates themselves must be malleable. We assessed this malleability by test-

ing whether the volatility manipulation described above altered participants’ estimated information

content, as reflected by the learning rates they used. Lastly, while activity of the central NE system

has been argued to represent estimates of volatility, it is not clear whether or how this system might

multiplex separate representations of the volatility of different classes of event, such as the positive

and negative outcomes examined here. We investigated this using pupilometry as a measure of NE

activity while participants completed the task. We hypothesised that humans maintain separable esti-

mates of the information content of positive and negative outcomes, that we could measure and

manipulate these estimates using our task and that phasic NE activity yoked to a specific type of out-

come would track the volatility of that outcome.

Results
30 participants (see Table 1 for demographic information) completed a two option learning task in

which, on every trial, one option would be associated with a monetary win and one with a loss (Fig-

ure 1). The win and loss outcomes occurred independently which required participants to learn sep-

arately which shape was associated with each outcome (Figure 1c). The information content of the

outcomes was varied across the three blocks by altering the volatility of the stimulus-outcome associ-

ations (Figure 1b). We estimated separate learning rates for the positive and negative outcomes by

fitting a computational model (see Materials and methods) to participant choice in each task block.

This allowed us to test whether participants independently altered the learning rates they used for

the win and loss outcomes in response to how informative that outcome was (i.e. its volatility). Pupil-

ometry data was collected during the task as a measure of activity in the central NE system.
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Do human learners maintain independent estimates of the information
content of positive and negative outcomes?
As predicted, participants’ learning rates for positive and negative outcomes reflected the informa-

tion content of the outcomes in the learning task (block volatility x parameter valence; F(1,28)

=27.97, p<0.001; Figure 2). Specifically, learning rates were higher for win (F(1,28) =15.47, p=0.001)

and loss (F(1,28) =18.02, p<0.001) outcomes when they were volatile (informative) than when they

were stable (not informative). Similarly the learning rate for wins was higher than that for losses

when wins were more volatile than losses (F(1,28) =26.02, p<0.001) and the learning rate for losses

was higher than for wins when losses were more volatile (F(1,28) =6.74, p=0.015). These results dem-

onstrate that participants maintain independent estimates of the information content of positive and

negative outcomes and that it is possible to alter these estimates using a simple volatility manipula-

tion. In contrast to the effects on learning rate there were no significant effects of the task on the

inverse temperature parameter of the learning model (Figure 2b; F(1,28) =0.01, p=0.92) indicating

that, as intended, the volatility manipulation specifically altered learning rate. See the Figure Supple-

ments for Figure 2 for additional analysis of the behavioural results as well as an additional experi-

ment in which the impact of expected uncertainty was assessed.

Does activity of the central NE system, as Estimated by Pupil Dilation,
Track the Volatility of Positive and Negative Outcomes?
Next, we investigated the extent to which central NE activity, as estimated using pupilometry, was

related to the information content of positive and negative outcomes in the learning task. Consistent

with the behavioural findings a significant interaction between block volatility and outcome valence

was found for the degree to which participants’ pupils dilated in response to outcome receipt (Fig-

ure 3; F(1,27)=6.16; p=0.02). In other words, participants’ pupils dilated more on receipt of an out-

come when that outcome was volatile (informative) relative to when it was stable (not informative).

This effect was not further modified by the time bin following outcome (block volatility x outcome

valence x time; F(5,135)=1.13, p=0.35). Analysing the positive and negative outcomes separately

indicated that the effect of block volatility was significant for the loss outcomes (F(1,27)=10.46,

p=0.003), but not for the win outcomes (F(1,27)=0.38, p=0.54). Indeed a direct statistical comparison

of the size of the volatility effect between the positive and negative outcomes indicated a greater

effect of volatility on the negative relative to positive outcomes (outcome volatility x valance; F(1,27)

=4.34, p=0.047). This effect was seen on the background of a generally greater pupil dilation to

receipt of a loss relative to a win (main effect of valence; F(1,27)=16.7, p<0.001).

Are the behavioural and pupilometry measures capturing the same
process?
As central NE activity is thought to mediate the effect of outcome information content on participant

choice (Yu and Dayan, 2005), there should be a relationship between how much a participant’s

pupils differentially dilate in response to an outcome during the informative and non-informative

blocks and the degree to which that participant adjusts their learning rate between blocks for the

same outcome. We tested this by assessing the correlation between the change in mean pupil

response between blocks and the change in behaviourally estimated learning rates, separately for

Table 1. Demographic details of participants

Measure Mean (SD)

Age 30.52 (9.51)

Gender 76% Female

QIDS-16 5.03 (3.95)

Trait-STAI 35.79 (10.63)

QIDS-16; Quick Inventory of Depressive Symptoms, 16 item self-report version. Trait-STAI; Speilberger State-Trait

Anxiety Inventory, trait form. Note that scores of 6 or above on the QIDS-16 indicate the presence of depressive

symptoms. The trait-STAI has no standard cut off scores.

DOI: https://doi.org/10.7554/eLife.27879.003
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wins and losses. As can be seen (Figure 4) the change in pupil response to loss outcomes between

blocks was significantly correlated with the change in loss learning rate (r(28)=0.5, p=0.009) but pupil

response to win outcomes was not correlated with change in win learning rate (r(28)=-0.08, p=0.7).

This correlation was significantly greater for losses than for wins (Fisher r-to-z transformation

z = 2.27, p=0.02).

Discussion
Humans adapt the degree to which they are influenced by a positive and negative outcome in

response to how informative they estimate those outcomes to be. These estimates produce a bias

resulting in preferential learning, with a higher learning rate being used for the outcome which is

most informative. These estimates are also malleable and thus may represent one route by which

Figure 2. Effect of the Volatility Manipulation on Participant Behaviour. (A) Mean (SEM) learning rates for each block of the learning task. As can be

seen the win learning rates (light green bars) and loss learning rate (dark red bars) varied independently as a function of the volatility of the relevant

outcome F(1,28) =27.97, p<0.001, with a higher learning rate being used when the outcome was volatile than stable (*p<0.05, ***p<0.001 for pairwise

comparisons). (B) No effect of volatility was observed for the inverse temperature parameters (F(1,28) =0.01, p=0.92). Source data available as

Figure 2—source data 1. See Figure 2—figure supplement 1 for an analysis of this behavioural effect which does not rely on formal modelling and

Figure 2—figure supplement 2 for an additional task which examines the behavioural effect of expected uncertainty.

DOI: https://doi.org/10.7554/eLife.27879.004

The following source data and figure supplements are available for figure 2:

Source data 1. Fitted model parameters, questionnaire measures and mean pupil response to volatility for all participants.

DOI: https://doi.org/10.7554/eLife.27879.007

Figure supplement 1. Analysis of switching behaviour in the learning task.

DOI: https://doi.org/10.7554/eLife.27879.005

Figure supplement 2. Magnitude task.

DOI: https://doi.org/10.7554/eLife.27879.006
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affective biases develop. A physiological measure of central NE activity was associated with this pro-

cess, although this was only seen convincingly for loss outcomes.

Previous work has demonstrated that humans adapt their learning in response to subtle statistical

aspects of the environment, such as employing an increased learning rate in volatile, or changeable,

contexts (Behrens et al., 2007; Browning et al., 2015; Nassar et al., 2012). These previous findings

could be explained by learners maintaining an estimate of how volatile the general environment is

and learning more rapidly from all outcomes experienced in those environments they judge to be

more volatile. However, the results of the current study, in which learning rates for positive and neg-

ative outcomes were seen to be altered independently, cannot be accounted for by a general esti-

mate of environmental volatility. Rather, this behaviour requires the parallel representation of the

estimated volatility of distinct outcomes which are then used to specifically tune the learning from

that outcome. More generally these results suggest that human learners are able to maintain inde-

pendent estimates of the information content of different events and use these estimates to ratio-

nally adjust their learning, in this case producing a valence dependent affective bias.

In the current study we investigated the link between the learning rate used by participants,

which provides a behavioural index of how informative they estimate an outcome to be, and pupil

Figure 3. Pupil response to outcome delivery during the learning task. Lines illustrate the mean pupil dilation to an outcome when it appears on the

chosen relative to the unchosen shape, across the 6 s after outcomes were presented. Light green lines (with crosses and circles) report response to win

outcomes, dark red lines report response to loss outcomes. Solid lines report blocks in which the wins were more informative (volatile), dashed lines

blocks in which losses were more informative. As can be seen pupils dilated more when the relevant outcome was more informative, with this effect

being particularly marked for loss outcomes. Shaded regions represent the SEM. Figure 3—figure supplement 1 plots the timecourses for trials in

which outcomes were or were not obtained separately, and Figure 3—figure supplement 2 reports the results of a complimentary regression analysis

of the pupil data.

DOI: https://doi.org/10.7554/eLife.27879.008

The following figure supplements are available for figure 3:

Figure supplement 1. Individual time courses for trials in which wins (panel a) and losses (panel b) are either received or not received.

DOI: https://doi.org/10.7554/eLife.27879.009

Figure supplement 2. Regression analysis of pupil data.

DOI: https://doi.org/10.7554/eLife.27879.010
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dilation which has been shown to correlate with central norepinepheric activity (Joshi et al., 2016).

Pupil dilation in response to outcome receipt differed as a function of the information content of the

outcome, although this was only significant for losses. Specifically, when losses were informative, the

difference in pupil dilation between trials in which a loss was received and when it was not received

was greater than when the losses were not informative. This result is similar to previously reported

findings of an increased pupil response to outcomes in a volatile context (Browning et al., 2015;

Nassar et al., 2012), although these earlier studies reported a general increase in pupil dilation

rather than a dilation conditioned on receipt of the outcome. A possible explanation of this differ-

ence is that, as discussed above, in order to complete the tasks used in previous studies, which

involved only one class of outcome, only an estimate of the general environmental volatility is

required, whereas to perform the current task a volatility signal dependent on the outcome pre-

sented is needed. In other words, the volatility signal found in the pupil data from the current study

is of the form required for participants to accurately perform the task. This suggests a degree of flex-

ibility of the pupillary volatility signal, in that it may reflect the general volatility of a learned associa-

tion or the volatility of specific dimensions of more complex associations depending on task

demands. It is not clear whether these general and specific volatility signals are produced by a single

or separate neural systems, although it may be possible to address this question using a task in

which the total volatility of all task outcomes is manipulated independently of the volatility of individ-

ual outcomes.

Figure 4. Relationship between behavioural and physiological measures. The more an individual altered their loss learning rate between blocks, the

more that individual’s pupil dilation in response to loss outcomes differed between the blocks (panel b; p=0.009), however no such relationship was

observed for the win outcomes (panel a; p=0.7). Note that learning rates are transformed onto the real line using an inverse logit transform before their

difference is calculated and thus the difference score may be greater than ±1. Figure 4—figure supplements 1 and 2 describe the relationship

between these measures and baseline symptoms of anxiety and depression.

DOI: https://doi.org/10.7554/eLife.27879.011

The following figure supplements are available for figure 4:

Figure supplement 1. Relationship between symptom scores and behavioural adaptation to volatility.

DOI: https://doi.org/10.7554/eLife.27879.012

Figure supplement 2. Relationship between symptom scores and pupillary adaptation to volatility.

DOI: https://doi.org/10.7554/eLife.27879.013
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The effect of outcome volatility on pupil dilation in the current study was significantly greater for

loss than win outcomes with the correlation between this signal and behaviour also being signifi-

cantly greater for losses. This surprising result raises the possibility that central norepinepheric activ-

ity is particularly related to the information content of negative, as opposed to positive outcomes.

However, while we are not aware of previous studies which have reported pupillary volatility signals

to positive and negative outcomes from a single task as in the current study, previous work has

reported the presence of pupillary volatility signals in reward only tasks (Nassar et al., 2012). This

suggests that the norepinpeheric system does respond to the volatility of positive outcomes, but

that this response is less pronounced than that for negative outcomes. One explanation for this may

be that, as discussed above, the volatility signal in the current task modified pupillary response to

outcome receipt vs. non-receipt. The receipt of a loss led to a significantly greater pupil dilation

than that produced by a win (see Figure 3—figure supplement 1) and thus the volatility effect,

which modifies the relative dilation observed when an outcome is received, may be less apparent for

wins. Of course, this explanation leaves open the question as to why the pupillary response to similar

magnitude losses and wins is asymmetric in the first place. A similar pupillary asymmetry has been

reported in decision making tasks designed to assess behavioural loss aversion (Tversky and Kahne-

man, 1992; Yechiam and Telpaz, 2011). It may be, therefore that the greater pupillary response to

both the occurrence of a loss and to loss volatility is related to the general overweighting of loss rel-

ative to win outcomes reported in the broader decision making literature. If correct, this would sug-

gest that increasing the relative magnitude of the pupillary response to the receipt of a win relative

to a loss (for example, by increasing the salience of wins by increasing their magnitude) would also

increase the size of the pupillary response to win volatility.

The pupilometry measure included in the current study raises the possibility that estimated infor-

mation content may be influenced by pharmacological as well as cognitive interventions. Pupil size is

influenced by the activity of a number of central neurotransmitters including norepinephrine

(Joshi et al., 2016) and previous work exploring the neural systems which control response to vola-

tility have predicted a key role for NE (Yu and Dayan, 2005) suggesting it as an obvious pharmaco-

logical target. A single study has reported an effect of atomoxetine, a norepinephrine reuptake

inhibitor, on learning in a volatile environment (Jepma et al., 2016) although no previous work has

examined the effect of a pharmacological intervention on learning to positive vs. negative outcomes.

It would be interesting to test whether a pharmacological manipulation of norepinepheric function

was able to modify the outcome specific volatility effect demonstrated in this paper as such an effect

may indicate a clinically useful interaction between pharmacological and cognitive interventions. A

pharmacological approach could also be used to investigate related mechanistic questions such as

the greater pupillary response to loss than win outcomes and the greater pupillary signal for loss

outcome volatility discussed above. Specifically, a greater impact of a pharmacological manipulation

on learning rates for losses than wins would provide experimental evidence for a preferential role for

the NE system in estimates of the information content of losses.

The parallel representation of estimated information content of two distinct outcomes, provides a

potential mechanism by which individuals may come to be generally more influenced by events of

one class than another. This finding may be relevant to clinical questions. In the case of depression,

patients have been shown to be more influenced by negative events, for example tending to

remember more negative than positive events (Bradley et al., 1995), attend to negative more than

positive events (Gotlib et al., 2004) and learn more from negative and less from positive outcomes

(Eshel and Roiser, 2010). As the negative biases described above are believed to be causally

related to symptoms of depression (Mathews and MacLeod, 2005), and interventions designed to

alter negative biases can reduce symptoms (Browning et al., 2012; NICE, 2009), these results raise

the possibility that novel interventions which target exstimated information content may act to alter

negative affective biases and thus reduce symptoms of the illness. Of course, identifying potential

targets for treatment and showing that they may be altered experimentally as done in this paper is

only the first step in the development of new treatments. The next step, analogous to a phase 2a

study in drug development (Ciociola et al., 2014), is to assess the initial efficacy of a potential inter-

vention which engages the target in a clinical population. A study designed to do this is currently

underway using the volatility manipulation described in this paper (study identifier NCT02913898).

While the results of the current study provide evidence that the information content of different

events can be estimated in parallel during learning, the level of abstraction at which these estimates
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function is not clear. For example, does the task used in the current study alter the estimated infor-

mation content of all positive and negative outcomes, or just those used in the task? This question is

relevant to the potential clinical application of interventions which modify this estimate, as the affec-

tive biases associated with emotional disorders are seen across a wide variety of contexts

(Mathews and MacLeod, 2005) and thus an intervention which modifies one particular instance of

bias is unlikely to be useful therapeutically. It is clearly unlikely that completing a single block of a

learning task, as done in the current study, will produce a broad and generalised alteration of the

estimated information content of all outcomes. Rather, in order to test the degree to which alter-

ation of estimated information content generalises it will be necessary to repeatedly expose partici-

pants to situations in which one class of outcome (e.g. positive) is more informative and then

measure whether this alters learning performance in separate tasks and, ultimately, whether it

impacts on clinical symptoms. The intervention used in the ongoing clinical study described above

involves repeatedly completing the ‘positive volatile’ block from the current study over the course of

two weeks (see; Browning et al., 2012 for a similar design) which will provide an initial assessment

of this question.

The information content of an outcome is not solely a function of the volatility of its occurrence.

Other factors, such as the strength of the association between a stimulus, or action, and the subse-

quent outcome, sometimes called the ‘expected uncertainty’ (Yu and Dayan, 2005) of the associa-

tion, will also influence how informative the outcome is. Outcomes in the learning task reported in

this paper vary in terms of both volatility and expected uncertainty, with both of these factors pre-

dicted to influence learning rate in the same direction (i.e. both factors should increase learning rate

in the volatile blocks). An additional experiment (see Figure 2—figure supplement 2) in which vola-

tility was kept constant but expected uncertainty varied found no effect on learning rate suggesting

that the current findings were likely to be due to the effects of volatility rather than expected uncer-

tainty. However, it would be interesting in future studies to explore whether it was possible to use

manipulations of expected uncertainty, in the same way that volatility is used in this study, to induce

a preference for positive over negative events. This may provide an alternative approach to engag-

ing and altering expected information content than the volatility based effect reported here.

The current study demonstrates that human learners maintain separable estimates of the informa-

tion content of distinct positive and negative outcomes and provides an initial proof of principle as

to how these estimates may be modified. The study illustrates a little explored application of compu-

tational techniques in cognitive neuroscience; they may be used to identify potential novel treatment

targets and by so doing spur the development of new and more effective treatments.

Materials and methods

Participants
30 English-speaking, individuals aged between 18 and 65 were recruited from the local community

via advertisements. The number of participants recruited for the current cohort was selected to pro-

vide >95% power of detecting a similar effect size as that reported in a previous study in which a vol-

atility manipulation was used to influence learning rate (Browning et al., 2015). Potential

participants who were currently on a psychotropic medication or who had a history of neurological

disorders were excluded from the study.

General procedure
The study involved a single experimental session during which participants completed a novel learn-

ing task (described below) as well as standard questionnaire measures of depression (Quick Inven-

tory of Depressive Symptoms, QIDS [Rush et al., 2003]) and anxiety (Spielberger State-Trait Anxiety

Inventory, trait subscale, STAI [Spielberger et al., 1983]) symptoms. The study was approved by the

University of Oxford Central Research Ethics Committee. Written informed consent was obtained

from all participants, in accordance with the Declaration of Helsinki.

The information bias learning task
The information bias learning task (Figure 1) was adapted from a structurally similar learning task

previously reported in the literature (Behrens et al., 2007; Browning et al., 2015). On each trial of
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the task participants were presented with two abstract shapes (letters selected from the Agathodai-

mon font) and chose the shape which they believed would result in the best outcome. On each trial,

the win and loss outcomes were independently positioned (both had 15 p magnitude) such that a

particular shape could be associated with one, both or neither of the win and loss outcomes

(Figure 1C). As the two outcomes were independent participants had to separately learn the likely

location of the win and the loss in the current trial. This learning was driven by the outcomes of pre-

vious trials and was used by participants to determine the most advantageous shape to choose on

the current trial. Throughout the task the number and type of stimuli displayed during each phase of

the trials was kept constant (Figure 1a) in order to minimise variations in luminance between trials.

In total, the participants completed three blocks of 80 trials each, with a rest session between

blocks. The same two shapes were used for all trials within a block, with different shapes being used

between blocks. The outcome schedules were determined such that the probability that wins and

losses were associated with shape A within a block always averaged 50%. In the volatile blocks the

association between shape A and the outcome changed from 15% to 85% and back again in runs

ranging from 14 to 30 trials. As described in the introduction, outcomes in the volatile blocks were

more useful when predicting future outcomes, making them ‘informative’, whereas in the stable

blocks outcome probabilities were fixed at 50%, making the outcomes ‘uninformative’ in terms of

predicting future trials (Figure 1B). In the first block of the task, both outcomes were volatile (infor-

mative), whereas in blocks 2 and 3 only one of the outcomes was volatile (informative) with the other

being stable (uninformative). See Figure 2—figure supplement 2 for results from an additional task

in which volatility was kept constant, while the strength of the association between stimuli and out-

comes (i.e. expected uncertainty) was varied. The order in which blocks 2 and 3 were completed was

counterbalanced across participants. Participants were paid all the money they had collected in the

task, in addition to a £10 baseline payment. Choice data from the task was analysed by fitting a

behavioural model which is described and compared to alternative models below.

The task was presented on a VGA monitor connected to a laptop computer running Presentation

software version 18.3 (Neurobehavioural Systems, Berkeley, CA). Participants’ heads were stabilised

using a head-and-chin rest placed 70 cm from the screen on which an eye tracking system was

mounted (Eyelink 1000 Plus; SR Research, Ottawa, Canada). The eye tracking device was configured

to record the coordinates of both of the eyes and pupil area at a rate of 500 Hz. The abstract shapes

of the learning task were drawn on either side of a fixation cross which marked the middle of the

screen and were offset by around 7˚ visual angle. The two outcomes (win and loss) were displayed on

the screen in randomised order for a jittered interval of 2–6 (mean 4) seconds. Auditory stimuli lasting

0.7 s were played when participants received a win (‘chi-ching’ sound) or loss (error buzz). Partici-

pants’ accumulated total winnings was displayed under the fixation cross and was updated at the

beginning of the subsequent trial.

Behavioural model used in analysis of the learning task
The primary measure of interest in the learning task is the learning rate for wins and for losses in

each of the three blocks. A simple behavioural model, based on that employed in related tasks

(Behrens et al., 2007; Browning et al., 2015) was used to estimate learning rate. This model first

estimated the separate probabilities that the win and loss would be associated with shape ‘A’ using

a Rescorla-Wagner learning rule (Rescorla and Wagner, 1972):

rwin iþ1ð Þ ¼ rwin ið Þþawin � winout ið Þ� rwin ið Þ

� �

rloss iþ1ð Þ ¼ rloss ið Þþaloss � lossout ið Þ � rloss ið Þ

� �

In these equations rwin ið Þ, which was initialised at 0.5, is the estimated probability that the win will

be associated with shape ‘A’ on trial i (NB the probability that the win is associated with shape ‘B’ is 1-

rwin ið Þ), winout ið Þ is a variable coding for whether the win was associated with shape ‘A’ (in which case

the variable has a value of 1) or shape ‘B’ (giving a value of 0) and awin is a free parameter, the learning

rate for the wins. rloss ið Þ, lossout ið Þ and aloss are the same variables for the loss outcome. These esti-

mated outcome probabilities were then transformed into a single choice probability using a soft max

function:
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PchoiceA ið Þ ¼
1

1þ exp� bwin�rwin ið Þ�bloss�rloss ið Þð Þ

Where PchoiceA ið Þ is the probability of choosing shape ‘A’ on trial i, and bwin and bloss are inverse

decision temperatures for wins and losses, respectively. The four free-parameters of this model

(learning rates and inverse temperatures for wins and losses) were estimated separately for each

task block and each participant by calculating the full joint posterior probability of the parameters,

given participants’ choices, and then deriving the expected value of each parameter from their mar-

ginalised probability distributions (Behrens et al., 2007; Browning et al., 2015). Choice data from

the first 10 trials of each block was not used when estimating the parameters as these trials were

excluded from the pupil analysis (due to initial pupil adaption) (Browning et al., 2015; Nassar et al.,

2012). Apart from the main behavioural analysis reported in Figure 2, the first block of the task in

which both wins and losses had a volatile outcome probability schedule were excluded from subse-

quent behavioural and pupil analysis. This first block of the task was designed to acclimatise partici-

pants to the task.

Alternative behavioural models and model selection
The behavioural model used in this study (Referred to as model 1 below) was developed based on

the models used in previous studies in which volatility is manipulated (Behrens et al., 2008,

Behrens et al., 2007; Browning et al., 2015). However, it is possible that this model does not pro-

vide the best fit to participant choice data. In order to assess this possibility we compared the fit of

this model against a range of comparator models using the Bayesian Information Criteria (BIC) met-

ric, which includes a penalty term for model complexity.

Model 2: It is possible for participants to perform our task without learning the independent

probability of the win and loss outcomes, but rather by taking a model-free (Daw et al., 2011)

approach in which the overall value of each shape was learned.

vAiþ1ð Þ ¼ vAið Þþavalue � out ið Þ� vAið Þ

� �

Here the value of shape A ðvAÞ initiates at 0 on trial 1, and is updated on every trial based on the

joint outcome (i.e. the win – loss for that shape) of the trial out ið Þ
� �

, which can be �1, 0 or 1 with a

single learning rate (avalue). The estimated relative values of the 2 shapes were then transformed

into a choice probability using a softmax function with a single inverse temperature parameter.

Model 3: An alternative approach, described by Behrens and colleagues (Behrens et al., 2007)

estimates trialwise volatility within a fully Bayesian framework. For this model we used Behrens’

Bayesian learner to independently estimate the expected probabilities of the win and loss outcomes

during the task (note that there are no free parameters for this learner). These estimates were then

combined using the same selector model described in the main text with two inverse temperature

parameters.

Model 4: This was a slightly simpler version of Model 1 in that it employed only a single inverse

temperature parameter allowing assessment of the degree to which using 2 such parameters influ-

enced model fit.

Model 5: Finally, we tested a slightly more complex version of Model 4 by including a risk param-

eter g, as used in previous studies, which modulates the estimated probabilities of wins and losses in

a non-linear way. Risk parameters have been shown to account for non-normative aspects of human

choice (Browning et al., 2015; Prelec, 1998), particularly when outcome probabilities are particu-

larly high or low:

rwi
~

n ið Þ ¼ 2
� �log2 rwin ið Þð Þ

g

ð Þ

rlo
~

ss ið Þ ¼ 2
� �log2 rloss ið Þð Þ

g

ð Þ

A summary of the five models can be found in Table 2 below:

All models were fitted to participant data using the same procedure described in the main paper.

BIC scores for each model are illustrated in Figure 5 below (note that lower scores indicate a better

fit). As can be seen the model reported in the main paper (Model 1) fits the data best. The single
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inverse temperature model (Model 4) performs almost as well, with the other models performing

less well.

Pupilometry data preprocessing
Blinks were identified using the Eyelink system’s built in filter and were then removed from the data.

Missing data points (including blinks) were linearly interpolated. The resulting trace was subjected to

a low pass Butterworth filter with a cut-off of 3.75 Hz and then z transformed across the session

(Browning et al., 2015; Nassar et al., 2012). The pupil response to the win and the loss outcomes

were extracted separately from each trial, using a time window based on the presentation of the

outcomes. This included a 1 s baseline period before the presentation of the outcome, and a 6 s

period following outcome presentation. Baseline correction was performed by subtracting the mean

pupil size during the 1 s baseline period prior to the presentation of each outcome, from each time

point in the post outcome period. Individual trials were excluded from the pupilometry analysis if

more than 50% of the data from the outcome period had been interpolated (mean = 7% of trials)

(Browning et al., 2015). One participant was excluded from the pupilometry analysis as more than

99% of their trials were excluded on this basis. The first 10 trials from each block were not used in

the analysis as initial pupil adaption can occur in response to luminance changes in this period

(Browning et al., 2015; Nassar et al., 2012). The preprocessing resulted in two sets of timeseries

per participant, one set containing pupil dilation data for each included trial when the win outcomes

were displayed and the other when the loss outcomes were displayed. A difference timeseries, cal-

culated as the mean pupil response when the outcomes appears on the chosen versus unchosen

shape in each block was then calculated which allowed for assessment of how the volatility of a spe-

cific outcome influenced dilation in response to receiving vs. not receiving that outcome (See Fig-

ure 3—figure supplement 2 for a complementary regression analysis of this data).

Preprocessing resulted in difference timeseries of pupil dilation data which represented the differ-

ential pupil dilation occurring during trials when the outcome (win or loss) was received relative to

when it was not received over the six seconds after presentation of the outcomes. These timeseries

were binned into 1 s bins to facilitate analysis.

Data analysis
Parameters derived from the computational models were transformed before analysis so that they

were on the infinite real line (an inverse logit transform was used for learning rates and a log trans-

form for inverse temperatures). Where possible figures illustrate non-transformed parameters for

ease of interpretation. The effect of the volatility manipulation on these transformed parameters was

tested using a repeated measures ANOVA of data derived from the last two task blocks (i.e. when

volatility was manipulated). In this ANOVA block volatility (win volatile block, loss volatile block) and

parameter valence (wins, losses) were within subject factors and block order (win volatile first, loss

volatile first) was a between subject factor. The critical term of this analysis is the block volatility x

parameter valence interaction which tests for a differential effect of the volatility manipulation on the

win and loss parameters.

The binned pupil timeseries data was analysed using a repeated measures ANOVA with time bin

(1–6 s), block volatility (win volatile, loss volatile) and valence (wins, losses) as within subject factors

and block order as a between subject factor. Again a block volatility x valence interaction tests for a

differential effect of the volatility manipulation on the pupil dilation in response to wins vs. losses.

Table 2. Description of Comparator Models

Model name Number of learning rate parameters Number of inverse temperature parameters Notes

1. 2 2 Model used in paper

2. 1 1 Model-free learner

3. 0 2 Bayesian learner

4. 2 1 Single inverse temperature model

5. 2 1 Additional risk parameter

DOI: https://doi.org/10.7554/eLife.27879.014
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We tested whether the volatility effect was larger for loss than win outcomes using a similar ANOVA

in which block volatility was replaced by ‘outcome volatility’ (i.e. outcome volatility is high when the

volatility of a given outcome, wins or losses, is high). In order to perform between subject correla-

tions of the pupilometry data the mean relative dilation across the entire six second outcome period

was also calculated for each participant and each block. In all analyses significant interactions were

followed up by standard post-hoc tests.

Figure 5. BIC Scores for Comparator Models (see table S1 for model descriptions). Smaller BIC scores indicate a better model fit. BIC scores were

calculated as the sum across all three task blocks. Bars represent mean (SEM) of the scores across participants.
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