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Prefrontal GABA levels, hippocampal resting perfusion and
the risk of psychosis
Gemma Modinos 1,2, Fatma Şimşek1, Matilda Azis1, Matthijs Bossong3, Ilaria Bonoldi1, Carly Samson1, Beverly Quinn4, Jesus Perez4,5,6,
Matthew R Broome7,8, Fernando Zelaya2, David J Lythgoe2, Oliver D Howes1, James M Stone 2, Anthony A Grace 9,
Paul Allen1,10 and Philip McGuire1

Preclinical models propose that the onset of psychosis is associated with hippocampal hyperactivity, thought to be driven by
cortical GABAergic interneuron dysfunction and disinhibition of pyramidal neurons. Recent neuroimaging studies suggest that
resting hippocampal perfusion is increased in subjects at ultra-high risk (UHR) for psychosis, but how this may be related to GABA
concentrations is unknown. The present study used a multimodal neuroimaging approach to address this issue in UHR subjects.
Proton magnetic resonance spectroscopy and pulsed-continuous arterial spin labeling imaging were acquired to investigate the
relationship between medial prefrontal (MPFC) GABA+ levels (including some contribution from macromolecules) and hippocampal
regional cerebral blood flow (rCBF) in 36 individuals at UHR of psychosis, based on preclinical evidence that MPFC dysfunction is
involved in hippocampal hyperactivity. The subjects were then clinically monitored for 2 years: during this period, 7 developed a
psychotic disorder and 29 did not. At baseline, MPFC GABA+ levels were positively correlated with rCBF in the left hippocampus
(region of interest analysis, p = 0.044 family-wise error corrected, FWE). This correlation in the left hippocampus was significantly
different in UHR subjects who went on to develop psychosis relative to those who did not (p = 0.022 FWE), suggesting the absence
of a correlation in the latter subgroup. These findings provide the first human evidence that MPFC GABA+ concentrations are
related to resting hippocampal perfusion in the UHR state, and offer some support for a link between GABA levels and hippocampal
function in the development of psychosis.

Neuropsychopharmacology (2018) 0:1–8; https://doi.org/10.1038/s41386-017-0004-6

INTRODUCTION
Post-mortem and preclinical studies have provided consistent
evidence that the pathophysiology of psychotic disorders involves
an alteration in GABAergic neurotransmission [1, 2]. More
specifically, schizophrenia has been linked to a defect in
glutamate decarboxylase (GAD67) mRNA in parvalbumin-
expressing (PV+) interneurons within a corticolimbic circuit
involving the prefrontal cortex and the hippocampus [3, 4].
Recent work on a neurodevelopmental animal model of
psychosis [5] indicates that medial prefrontal cortex (MPFC)
dysfunction leads to increased stress-induced functional
loss of hippocampal PV+ interneurons [6], which is associated
with hippocampal hyperactivity through disinhibition of
glutamatergic pyramidal cells [7]. Increased glutamatergic output
from the ventral hippocampus is hypothesized to then lead to
elevated subcortical dopamine function, resulting in some of the
behavioral abnormalities associated with schizophrenia [8].
Furthermore, independent research using other preclinical
models shows that mutations in genes implicated in schizo-
phrenia, such as ERBB4 and dysbindin, are associated with

disrupted PV+ interneuron function and dysregulation of pyrami-
dal cell activity [9, 10].
Data from post-mortem and preclinical studies thus suggest

that cortical GABAergic function is reduced in schizophrenia, and
that this can be detected in the premorbid stages of the disorder
[11]. GABA concentrations can be quantified in vivo using proton
magnetic resonance spectroscopy (1H-MRS). Nonetheless, studies
comparing MPFC GABA levels in patients and controls have
reported inconsistent findings, including decreases [12–14],
increases [15], and no significant differences [16–19]. Indeed, a
recent meta-analysis did not find a significant difference in
regional GABA levels between patients with schizophrenia and
healthy volunteers [20]. There have been relatively few 1H-MRS
GABA studies in subjects at ultra-high risk (UHR) of developing
psychosis, and all of these have examined GABA in the MPFC. One
study reported higher levels in subjects at UHR compared with
controls [21]; one described lower GABA levels in UHR subjects
than in controls [22], and two studies including a recent one from
our group found no differences between UHR subjects and
healthy controls [23, 24]. Despite these inconsistencies, while
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preclinical models suggest that MPFC dysfunction leads to
hippocampal overdrive in psychosis [6], this has yet to be
explicitly investigated in humans.
Regional cerebral blood flow (rCBF) is directly correlated with

the level of local neural activity [25] and can be quantitatively
measured using arterial spin labeling (ASL), which uses magne-
tically labeled blood as endogenous tracer [26]. Studies using ASL
suggest that resting perfusion is increased in the hippocampus in
individuals at UHR of psychosis [27, 28], and similar findings in
UHR have been reported using other magnetic resonance imaging
methods involving intravenous injections of the contrast agent
gadolinium to measure basal cerebral blood volume [29]. In
patients with schizophrenia compared to healthy controls,
hyperperfusion in the hippocampus has been documented [30–
33], as well as in other brain regions such as the basal ganglia and
middle temporal lobes [34], cerebellum, brainstem and thalamus
[35], although the latter two studies did not report significant
effects in the hippocampus. The aim of the present study was to
investigate whether resting perfusion of the hippocampus in UHR
individuals may be related to GABA levels in the prefrontal cortex.
We used pulsed-continuous arterial spin labeling (pCASL) to
measure resting hippocampal perfusion and 1H-MRS to examine
MPFC GABA levels in a sample of individuals at UHR of developing
psychosis. For 1H-MRS, the MPFC was chosen as (i) this is the most
widely researched region in 1H-MRS GABA studies of schizo-
phrenia/UHR subjects [36], (ii) preclinical models indicate that
MPFC deficits dysregulate hippocampal activity [6], and (iii)
measurement of hippocampal GABA with 1H-MRS is highly
technically challenging. We tested the hypothesis that MPFC
GABA levels would be negatively associated with hippocampal
perfusion in UHR subjects. A further prediction was that this
association would be strongest in the subgroup of UHR subjects
who subsequently developed psychosis.

MATERIALS AND METHODS
Participants
Ethical approval for the study was obtained from the Research
Ethics Committee of King’s College London and South London
and Maudsley (SLaM) NHS Trust, and all participants provided
informed consent. Males and females aged 18–30 were invited to
participate and the study was completed by 36 subjects at UHR of
psychosis.
Participants were recruited from three different clinical sites, but

they all underwent pCASL and 1H-MRS scanning on a General
Electric Signa HDx TwinSpeed 3T scanner (Milwakee, Wisconsin) at
the Centre for Neuroimaging Sciences, Institute of Psychiatry,
Psychology & Neuroscience (King’s College London), in a single
session. All clinical assessments were conducted on the same day
of scanning at King’s College London by trained researchers. The
different sites were: OASIS (Outreach and Support in South
London) [37], part of the SLaM NHS Trust (n = 22); CAMEO, part of
the Cambridge and Peterborough NHS Trust (n = 11); the West
London Early Intervention Service (n = 2); and the Coventry and
Warwick NHS Trust (n = 1). Inclusion criteria involved the presence
of one (or more) of the following: (1) attenuated psychotic
symptoms (APS), (2) a brief psychotic episode of less than 1 week’s
duration that spontaneously remits without antipsychotic medica-
tion or hospitalization (Brief Limited Intermittent Psychotic
episode), and (3) trait vulnerability (schizotypal personality
disorder or a first-degree relative with psychosis) plus a marked
decline in psychosocial functioning (Global Assessment of
Functioning, GAF) [38]. UHR signs and symptoms for inclusion
criteria were assessed with the Comprehensive Assessment of At-
Risk Mental States (CAARMS) [39], a semi-structured interview
designed to assess prodromal psychopathology in people at UHR
for psychosis. All UHR subjects were antipsychotic-naïve and none
were on benzodiazepines at the time of scanning. Eleven out of

the 36 participants were currently taking antidepressant medica-
tions. Exclusion criteria were past/present diagnosis of psychotic
disorders, past/present/familiar history of neurological illness,
substance abuse/dependence as defined using DSM-5 criteria
[38], or contraindication to scanning. All subjects had an estimated
premorbid IQ in the normal range as assessed with the Wechsler
Adult Intelligence Scale-III (WAIS-III) [40].

Clinical measures
At the time of the scan, the following measures were collected:
prodromal symptomatology using the CAARMS [39]; anxiety and
depression symptoms using the Hamilton Anxiety and Depression
Scales (HAM-A / HAM-D) [41]; and social and occupational
functioning using the GAF [38]. Medication history and use of
alcohol, tobacco, and illicit drugs was assessed using a semi-
structured interview adapted from the Early Psychosis Prevention
and Intervention Centre (EPPIC) Drug and Alcohol Assessment
Schedule (http://www.eppic.org.au). At follow-up, clinical out-
comes were determined using the CAARMS Psychosis Threshold
criteria [39] and confirmed with the Structured Clinical Interview
for Diagnosis [38] as administered by an experienced psychiatrist.
Seven of the UHR subjects (19%) developed a psychotic disorder
(the psychotic transition group) within the follow-up period
(18 months). These disorders comprised: schizophrenia (n = 3),
schizoaffective disorder (n = 1), and bipolar disorder (n = 3).

pCASL acquisition and preprocessing
Parameters for data acquisition, computation of CBF maps, and
procedures for spatial normalization of these maps to the
reference space of the Montreal Neurological Institute (MNI) were
identical to those described in a separate, non-overlapping UHR
sample [28].
In brief, four pairs of control-labeled pCASL images were

acquired using a 3D Fast Spin Echo (FSE) stack-of-spiral multi-shot
readout, after a post-labeling delay of 1.5 s. Labeling of arterial
blood was achieved using a flow-driven adiabatic inversion
approach [42], consisting of a train of 1000 Hanning-shaped RF
pulses with a duration of 500 s and an inter-pulse gap of 1ms.
Parameters of the image readout were as follows: TE = 32.25 ms;
TR = 5500 ms; field of view = 240; flip angle = 90°; 60 contiguous
slice location of thickness 3 mm were obtained to achieve whole-
brain coverage. To maximize sensitivity to blood perfusion,
background suppression was achieved by selective saturation of
the image slab at 4.3 s before acquisition, selective inversion 3 s
before acquisition, and non-selective inversions at 1.5 s, 764 ms,
334ms, and 84ms before imaging. A proton-density calibration
image was collected with the same sequence. This image was
used to quantify blood flow in physiological units (ml blood/100 g
tissue/min) following the guidelines recently published for the
computation of CBF [43]. The complete ASL pulse sequence
including the proton-density image was performed in 6min. For
image registration a high-resolution T2-weighted Fast-Relaxation
Fast Spin Echo (FR-FSE) image (TE = 65.28 ms, TR = 4380ms, flip
angle = 90°, FoV = 240, slice thickness = 2mm, matrix = 320 × 320
mm) was employed.
CBF maps were preprocessed using FMRIB Software Library

(FSL) software applications (http://www.fmrib.ox.a.c.uk/fsl) and
Statistical Parametric Mapping (SPM8; http://www.fil.ion.ucl.ac.uk/
spm/). A multi-step approach was performed including the pCASL,
the T2, and the SPGR scans: (1) elimination of extra-cerebral signal
from the T2 scan using the “Brain Extraction Tool” (BET) of FSL7,
and co-registration of the skull-stripped T2 volume and its
corresponding T2 binary mask to the pCASL scan; (2) multi-
plication of the pCASL scan (rCBF map) with the co-registered
brain binary mask to remove extra-cerebral signal from this scan;
(3) co-registration back to the original T2 scan of the skull-stripped
CBF map following step (2); (4) normalization of the subject’s T2
and multiplied pCASL (step 2) with the T2 template from SPM.
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Finally, spatial smoothing of the normalized individual CBF maps
was carried out using a 6mm Gaussian smoothing kernel.

1H-MRS acquisition and quantification
GABA+ levels (including some signal from unrelated macromole-
cules, i.e. diverse proteins and lipids) were obtained from the
MPFC using MEGA-PRESS, which incorporates a standardized
chemically selective suppression (CHESS) water suppression
routine (TE = 68ms, TR = 2000ms, 320 averages). For each acquisi-
tion, unsuppressed water reference spectra (16 averages) were
also acquired. Shimming was optimized, with auto-prescan
performed twice before each scan. The region of interest (ROI)
in the MPFC was prescribed from the midline sagittal localizer, and
the center of the 40 × 25 × 30mm ROI, mostly covering the MPFC
but also including some contribution from anterior cingulate
cortex, was placed above the middle section of the corpus
callosum (Fig. 1a). MEGA-PRESS scan duration was ~13min.
Structural data were acquired by means of a three-dimensional
T1-weighted magnetization prepared rapid acquisition gradient-
echo sequence (TR = 6.98 ms, TE = 2.85 ms, voxel size = 1.05 ×
1.05 × 1.2 mm, FoV = 260mm, flip angle = 11°, inversion time =
400 ms).

Spectra were analyzed using LCModel version 6.3-1L (http://s-
provencher.com/pages/lcmodel.shtml) with the basis set provided
by its author [44, 45]. Water-scaled GABA+ values were corrected
for the voxel tissue composition by using the formula: Metabolite
Corrected =Metabolite Concentration × [proportion white matter
+ (1.283 × proportion gray matter) + (1.55 × proportion corticosp-
inal fluid)]/(proportion white matter + proportion gray matter)
[46]. Voxel gray matter (GM), white matter (WM), and corticospinal
fluid (CSF) content for each subject were determined by extracting
the location of the voxel from the spectra file headers, and using
an in-house program to calculate the percentage of GM, WM, and
CSF content using the segmented T1-weighted images. We used
(i) Cramer-Rao minimum variance bounds (CRLB) > 20% as
reported by LCModel, which are estimates of fit of the metabolite
peaks, and (ii) signal-to-noise ratio (SNR) < 8 to exclude poorly
fitted metabolite peaks from statistical analysis [45, 47]. Data from
all 36 participants in the present study met these criteria. The
GABA 1H-MRS data from the male participants in this sample (n =
21) overlap with the dataset recently reported as part of a
case–control study in males [23]. The primary 1H-MRS measure
was GABA+ normalized to water concentrations are given in
“institutional units”.

Statistical analysis
Demographic data. Analysis of demographic data was performed
with the Statistical Package for Social Sciences (SPSS) version 24
(Chicago, IL). After confirming homogeneity of variance with
Levene’s test, the effect of group (psychotic transition, non-
transition) on demographic and clinical variables was tested using
independent samples t-tests for parametric data and Chi-square
tests for non-parametric data. Significant effects are reported at p
< 0.05, two tailed.

1H-MRS analysis. Between-group differences in MPFC GABA+
concentrations were examined with an independent samples t-
test in SPSS. Levene’s test was used to check for equality of
variance across groups.

pCASL analysis. Between-group differences in rCBF were exam-
ined with an independent samples t-test using Statistical
Parametric Mapping Version 8 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8), including age and gender as covariates of no
interests. Hippocampal ROIs were specified a priori using the
coordinates from a previous rCBF study in a separate UHR sample
[28]: MNI coordinates right hippocampus x, y, z = 20, −28, −8 and
left hippocampus x, y, z = −22, −28, −8. These coordinates were
used for small volume correction with a 10 mm sphere. Results
were considered significant after p < 0.05 with family-wise error
correction (FWE). For completeness, exploratory whole-brain
analyses were performed and are reported when surviving p <
0.05 FWE correction. This second level model used the global
average CBF value over the GM volume of each subject as a
covariate, in order to account for inter-individual differences in
global perfusion [48].

Integration of pCASL and 1H-MRS data. The relationship between
hippocampal rCBF and MPFC GABA+ levels was also investigated
in SPM8. Individual GABA+ values were entered as regressors in a
voxel-wise ANOVA, using age and gender as covariates of no
interest, to examine (i) rCBF-GABA+ associations across the UHR
sample, as well as (ii) group differences in rCBF-GABA+ associa-
tions in UHR subjects who later transitioned to psychosis (UHR-T)
compared with those who did not (UHR-NT). Hippocampal ROIs
were specified a priori using the same coordinates as described
above, and results were considered significant after p < 0.05 FWE.
For completeness, exploratory whole-brain analyses were per-
formed and are reported when surviving p < 0.05 FWE correction.
As above, the global average CBF value over the GM volume of

Fig. 1 a Baseline GABA+ levels were not directly linked to transition
outcomes (n= 7). Location of MEGA-PRESS voxel on the medial
prefrontal cortex and representative MRS spectrum. b Mean GABA+
concentrations by group. Light bars represent ultra-high-risk
subjects who later transitioned to psychosis and dark bars those
who did not
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each subject was used as a covariate to account for inter-
individual differences in global perfusion [48].
Finally, potential effects of use of antidepressant medication or

substances (tobacco, cannabis, and alcohol) on our outcome
measures (GABA+ levels, rCBF, GABA+, and rCBF interactions)
were assessed either in SPSS or by adding those variables as
covariates in the SPM designs. Similarly, associations between
GABA+ levels and prodromal symptom severity were tested using
Pearson’s product-moment correlation in SPSS.

RESULTS
Table 1 summarizes the participant’s characteristics. All subjects
met the APS criteria of the UHR state. The UHR-NT and UHR-T
subgroups were not significantly different in terms of age
(p = 0.734), gender (p = 0.943), estimated IQ (p = 0.968), cigarette
(p = 0.182), cannabis (p = 0.797), alcohol use (p = 0.399), or
antidepressant use (p = 0.899).

1H-MRS spectral quality
Spectra obtained were of good quality, with LCModel reporting
mean ± SD signal-to-noise ratio of 21.94 ± 3.46, line width of 6.84
± 2.92 Hz. UHR subjects who transitioned to psychosis did not
differ from UHR-NT subjects in any of the parameters relating to
GABA+ spectral quality or voxel tissue content (Table 2).

1H-MRS in UHR individuals: relationship to clinical outcome
There was no difference in GABA+ levels between the UHR-T and
UHR-NT subgroups (t = −1.25; p = 0.222; Fig. 1b, Table 2). Sub-
stance use and antidepressant medication had no significant
effect on GABA+ levels (tobacco: r = −0.094, p = 0.591; alcohol: r =
−0.057, p = 0.746; cannabis: F4,34 = 0.484, p = 0.748; antidepres-
sants: t = −0.005, p = 0.996), and there was no association between
GABA+ concentrations and levels of CAARMS positive (r = −0.027,
p = 0.877) or negative symptoms (r = −0.119, p = 0.495).

rCBF in UHR individuals: relationship to clinical outcome
Voxel-wise ROI analysis on hippocampal rCBF showed no
significant differences between UHR-NT and UHR-T surviving p <
0.05 FWE correction. At the whole-brain level, UHR-T subjects

showed lower rCBF than UHR-NT subjects along a cortical midline
region encompassing the paracentral lobule and the supplemen-
tary motor area (x, y, z = 2, −32, 60; T = 5.51; Z = 4.59; p = 0.040
FWE) (Figure S1). These findings remained unchanged after
adding tobacco, alcohol, and cannabis use as covariates of no
interest in the analysis (no suprathreshold voxels in hippocampal
ROI analysis, but lower rCBF in UHR-T subjects in the cortical
midline region x, y, z = 2, −32, 60; T = 5.62; Z = 4.58; p = 0.044 FWE).

GABA+ levels and hippocampal rCBF in UHR individuals
Figure 2 shows the relationship between GABA+ levels and rCBF in
the UHR group, independent of clinical outcome. ROI analysis
revealed a significant positive association between MPFC GABA+
levels and rCBF in the left hippocampus (x, y, z = −26, −20, −4; T =
3.47; Z = 3.16; p = 0.044 FWE). This result remained significant
when adding tobacco, alcohol, and cannabis use as covariates of
no interest (x, y, z = −28, −18, −6; T = 3.30; Z = 3.00; p = 0.040 FWE).

Table 1. Participant demographic and clinical characteristics at presentation

Total UHR (n= 36) Non-transition (n= 29) Transition (n= 7) UHR-NT vs UHR-T

Mean (SD) Mean (SD) Mean (SD) Statistic p

Age (years) 21.8 (2.9) 21.7 (2.9) 22.1 (3.0) t= 0.342 0.734

Gender (male/female) 21/15 17/12 4/3 χ2= 0.005 0.943

Estimated IQ 107.6 (11.6) 107.8 (12.3) 106.2 (7.3) t= −0.276 0.784

CAARMS positive 11.9 (4.2) 11.8 (4.1) 12.6 (3.3) t= 0.443 0.661

CAARMS negative 6.9 (4.42) 6.8 (4.2) 7.1 (5.7) t= 0.173 0.864

GAF 58.3 (11.6) 58.5 (11.3) 57.9 (13.5) t= −0.121 0.905

HAM-A 21.0 (11.7) 18.6 (11.0) 28.4 (11.4) t= 2.046 0.051

HAM-D 19.2 (11.3) 17.4 (11.9) 24.6 (7.6) t= 1.485 0.149

Tobacco (cigarettes/day) 5.4 (8.2) 6.4 (8.8) 1.7 (3.3) t= −1.362 0.182

Alcohol (units/day) 2.3 (4.6) 2.7 (5.1) 1.0 (0.6) t= −0.854 0.399

Cannabis (median [range]) 0 (0–4) 0 (0–4) 1 (0–4) χ2= 1.667 0.797

Antipsychotic medication 0 – – – –

Benzodiazepines 0 – – – –

Antidepressant medication (y/n) 11/25 9/20 2/5 χ2= 0.016 0.899

CAARMS Comprehensive Assessment of At Risk Mental States, Cannabis/alcohol use: 0= never, 1= experimental use (has tried occasionally), 2= occasional use
(has used small quantities from time to time), 3=moderate use (has used in small quantities regularly / large amounts occasionally), 4= severe use (has
frequently used large quantities, often to intoxication/debilitation), GAF Global Assessment of Functioning, HAM-A/D Hamilton Anxiety and Depression Scales

Table 2. 1H-MRS quality parameters and metabolite levels

Total UHR
(n= 36)

Non-transition
(n= 29)

Transition
(n= 7)

UHR-NT vs
UHR-T

Mean (SD) Mean (SD) Mean (SD) Statistic p

SNR 21.9 (3.5) 21.8 (3.2) 22.7 (4.7) 0.650 0.520

Line
width

6.8 (2.9) 7.0 (3.1) 6.2 (1.7) −0.692 0.494

Voxel
CSF

0.1 (0.1) 0.1 (0.0) 0.2 (0.1) 0.539 0.593

Voxel GM 0.5 (0.4) 0.5 (0.0) 0.5 (0.0) −0.497 0.622

Voxel
WM

0.3 (0.1) 0.3 (0.0) 0.3 (0.1) −0.059 0.953

GABA+ 3.9 (0.7) 3.8 (0.6) 4.2 (0.9) 1.245 0.222

GABA+
% CRLB

5.8 (1.9) 5.9 (1.5) 5.3 (1.4) −0.948 0.350

CRLB Cramer-Rao Lower Bounds, CSF cerebrospinal fluid, GM gray matter,
SNR signal-to-noise ratio, WM white matter
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Voxel-wise whole-brain analysis revealed a negative association
between MPFC GABA+ levels and rCBF in the left ventrolateral PFC
(x, y, z = −42, 26, −12; T = 6.15; Z = 4.91; p = 0.011 FWE). However,
Cook’s D test identified one influential data point in this
association (pertaining to a UHR-T subject). Removing this subject
from the analysis rendered the whole-brain correlation between
MPFC GABA+ levels and rCBF in the ventrolateral PFC no longer
significant at p < 0.05 FWE. No other whole-brain results survived
FWE correction at p < 0.05.

GABA+ levels and hippocampal rCBF in UHR individuals: effect of
psychotic transition
A significant group × GABA+ × rCBF interaction in the left hippo-
campus ROI (x, y, z = −18, −30, 0, T = 3.83, Z = 3.43, p = 0.022 FWE)
indicated that the strength of the association between prefrontal
GABA+ levels and hippocampal rCBF in UHR subjects who went
on to develop psychosis was different from that in those who did
not. This reflected a strong correlation in the subgroup who
developed psychosis, but the absence of a correlation in the
subgroup who did not transition (Fig. 3).
Analysis of the data on self-reported anxiety as measured with

the HAM-A (available in n = 28 subjects: 21 UHR-NT and 7 UHR-T)
revealed a trend towards higher anxiety levels in UHR subjects
who transitioned to psychosis than in those who did not (t =

−2.046; p = 0.051). However, Pearson correlation analysis showed
that HAM-A scores were not associated with GABA+ levels (UHR
total: r = −0.160, p = 0.415; UHR-NT: r = −0.270, p = 0.237; UHR-T: r
= −0.308, p = 0.502). Adding HAM-A scores as covariate of no
interest in the rCBF group comparison rendered the whole-brain
finding of hypoperfusion in a cortical midline area no longer
significant (p = 0.093 FWE). HAM-A scores were not significantly
associated with rCBF in UHR-T versus UHR-NT at p < 0.05 FWE
(either whole-brain or with hippocampal ROI analysis), and the
positive association between GABA+ levels and hippocampal rCBF
remained significant after using HAM-A scores as covariate of no
interest in the SPM analysis (x, y, z = −26, −20, 4; T = 3.89; Z = 3.33;
p = 0.033 FWE). When antidepressant medication was used as
covariate of no interest in the model the result in the
hippocampus remained significant for both the across-group
correlation with GABA+ levels (x, y, z = −28, −18, −6; T = 3.26; Z =
2.98; p = 0.041 FWE) and the group interaction (x, y, z = −18, −30, 0,
T = 4.08, Z = 3.60, p = 0.012 FWE).

DISCUSSION
The main finding of the present study was that MPFC GABA+
levels were related to resting hippocampal perfusion in subjects at
UHR of developing psychosis. While we found no group

Fig. 2 Baseline positive association in UHR subjects between levels of GABA+ in the MPFC and rCBF in the left hippocampus.rCBF values are
expressed as ratio over global rCBF. Significant effects at p< 0.05 FWE, shown at p< 0.005 uncorrected for display purposes

Fig. 3 Plots depicting the group by GABA+ by rCBF interaction in the left hippocampus from ROI analysis.Regression slopes were significantly
different between UHR subjects with psychotic transition (UHR-T) and UHR subjects without transition (UHR-NT). rCBF values are expressed as
the ratio over global rCBF. Significant effects at p< 0.05 FWE
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differences in the standalone GABA 1H-MRS or hippocampal rCBF
measures, the GABA+ correlation with hippocampal perfusion
appeared to be driven by the UHR subjects who subsequently
developed a psychotic disorder: there was a strong correlation in
this subgroup, but no correlation in the UHR subjects who did not
develop psychosis.
Preclinical models propose that cortical inhibition deficits lead

to hippocampal hyperexcitability in psychosis, and that resulting
increased glutamatergic outputs from the hippocampus to the
striatum dysregulate subcortical dopaminergic function [49].
Recent neuroimaging studies have provided data partly consistent
with such models. Resting hippocampal hyperperfusion has been
described, compared with healthy controls, in patients with
schizophrenia [33], and in subjects at UHR for psychosis [27, 28].
Moreover, within a UHR sample, the level of hippocampal
hypermetabolism as measured using the contrast agent gadoli-
nium to map basal cerebral blood volume has been linked to the
risk of later transition to psychosis (n = 6) [29]. Independent work
using positron emission tomography indicates that subcortical
dopamine function is increased in psychosis [50] and in UHR
subjects [51–54], and that the level of increase in UHR subjects is
linked to the later onset of psychosis [55]. Our findings expand
these data by providing evidence to suggest that distinct
interactions between cortical GABA+ levels and hippocampal
resting perfusion may play a role in the development of psychosis.
Although we predicted that hippocampal rCBF would be
correlated with MPFC GABA+ levels, we expected that the
direction of the correlation would be negative rather than
positive. This was based on post-mortem and preclinical evidence
that PV+ interneuron expression is decreased in psychosis [1, 2, 49,
56]. Recent evidence suggests that the development of subcortical
hyperdopaminergia in rodents is related to a failure of the MPFC
to down-regulate medial temporal lobe activity [6], and that the
MPFC can regulate hippocampal and subcortical dopamine
neuron activity via the nucleus reuniens of the thalamus [57].
Human neuroimaging studies suggest that the polarity of the
correlation between cortical activation and subcortical dopamine
function in UHR individuals may differ depending on the cortical
region involved: a positive correlation has been reported for
hippocampal activation [58], but a negative correlation for
prefrontal activation [59]. An additional consideration is that in
preclinical and post-mortem studies the GABAergic abnormality
appears to be specific to PV+ neurons [60], which account for
~40% of the cortical GABAergic interneuron population. In
contrast, a limitation of 1H-MRS is that it quantifies total tissue
concentrations as opposed to those from a particular GABA cell
type, and increases could thus reflect changes in other classes of
GABA interneuron. For example, compensatory mechanisms for a
PV+ deficit and/or hippocampal overdrive might involve increased
GABA levels in PV− interneurons [61]. An alternative explanation
for the observed positive correlation between MPFC GABA+ levels
and hippocampal resting perfusion is that intrinsic hippocampal
GABAergic dysfunction may result in hippocampal hyperperfusion
in psychosis [31] and hence GABAergic increases in MPFC [17, 21]
may be compensatory in nature. Noteworthy, the measurement of
hippocampal GABA function using 1H-MRS is technically challen-
ging and only one such study to date has been published,
reporting no significant differences between patients with
schizophrenia and healthy controls [62]. Future work measuring
GABAergic function in homologous regions across species with
similar imaging methods may comprehensively delineate the
molecular pathway linking GABAergic dysfunction to the expres-
sion of schizophrenia-like characteristics.
Exploratory analysis of the associations between levels of GABA

+ in the MPFC and whole-brain rCBF revealed a significant
negative association with the left ventrolateral PFC, which was
strongest in the subgroup of UHR subjects who later transitioned
to psychosis. Nevertheless, this effect was no longer significant

once anxiety levels (HAM-A) were included in the analysis,
suggesting a potential relationship between this whole-brain
finding and anxiety levels in the UHR state. The ventrolateral PFC
plays a major role in cognitive control processes, particularly in the
cognitive regulation of emotional states [63, 64]. Difficulties with
emotion regulation are proposed to be a core feature of anxiety
disorders [65], in which reduced functional activation of ventro-
lateral PFC regions is a robust finding, along with hyperresponsiv-
ity of limbic, emotion-generation regions [66]. Although we did
not have a specific hypothesis about this brain area, the direction
of the association with GABA+ levels (negative) aligns with what
would be hypothesized from preclinical and post-mortem
findings. Although speculative, a potential explanation may be
that altered GABA-perfusion interactions between cognitive
control regions might lead to inefficient down-regulation of
anxiety experiences in UHR subjects, particularly in those who
later develop psychosis (who did show a trend towards higher
self-reported anxiety than subjects who did not develop
psychosis, p = 0.051). These findings are of interest and merit
further research in larger samples.
In terms of limitations, the present study was part of a larger

multimodal imaging project investigating the neurobiology of
psychosis onset in UHR individuals, following an asymmetric
prospective design. Both rCBF and 1H-MRS data could not be
collected for the relatively small number of healthy controls
included in the larger project, which precluded the inclusion of a
comparison group in this circuit-based UHR study. Furthermore,
the size of the UHR sample limited the number of subjects
transitioning to psychosis by the follow-up point; the longitudinal
results between UHR-T and UHR-NT must thus be interpreted with
caution. Future longitudinal studies in larger UHR samples are
warranted to clarify the prediction value of GABA-perfusion
interactions for psychosis onset, confirm/refute the nature of our
positive findings, and elucidate whether these are transdiagnostic
or rather specific to different types of psychotic disorders. There
was a trend towards higher levels of anxiety in the subgroup that
transitioned to psychosis, but no significant association was found
between anxiety scores and levels of GABA + , and the GABA-
hippocampal rCBF associations and group interactions remained
significant when HAM-A scores were included as covariate of no
interest in the analysis. Finally, regarding MEGA-PRESS acquisition,
the size of our MPFC voxel meant that some portion of anterior
cingulate cortex was also included. In addition, a limitation
intrinsic to all MEGA-PRESS studies is that the GABA signal
contains some contribution from macromolecules, i.e. diverse
proteins and lipids. However, at present, there is no evidence to
suggest that the macromolecular contribution would differ
between the UHT-T and UHR-NT subgroups.
In summary, our study indicates that, in individuals at ultra-high

risk of developing psychosis, the level of resting hippocampal
perfusion was related to prefrontal GABA+ levels. Furthermore, the
data suggest that this association was present in the UHR subjects
who went on to develop a psychotic disorder and absent in those
who did not, although the study did not identify significant
differences between UHR-NT and UHR-T subjects in either
hippocampal rCBF or GABA 1H-MRS alone. In light of recent
evidence demonstrating that peripubertal pharmacological inter-
vention on the GABAergic system in a rodent model of psychosis
can block the development of striatal hyperdopaminergia in
adulthood [67–69], further research is warranted to investigate
whether clinical interventions in the high-risk phase targeting this
pathway may have the potential to reduce the risk of developing
psychosis.
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