dc.contributor.author | Goodwin, Guy M | |
dc.contributor.author | Geddes, John R | |
dc.contributor.author | Saunders, Kate E.A. | |
dc.date.accessioned | 2019-01-16T16:22:37Z | |
dc.date.available | 2019-01-16T16:22:37Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Imanol Perez Arribas, Guy M. Goodwin, John R. Geddes, Terry Lyons and Kate E. A. Saunders. A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder.Translational Psychiatry Vol 8, 274 (2018) | en |
dc.identifier.issn | 2158-3188 | |
dc.identifier.uri | https://oxfordhealth-nhs.archive.knowledgearc.net/handle/123456789/162 | |
dc.description | This is an Open Access article under the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). | en |
dc.description.abstract | Mobile technologies offer new opportunities for prospective, high resolution monitoring of long-term health
conditions. The opportunities seem of particular promise in psychiatry where diagnoses often rely on retrospective
and subjective recall of mood states. However, deriving clinically meaningful information from the complex time series
data these technologies present is challenging, and the current implications for patient care are uncertain. In this
study, 130 participants with bipolar disorder (n = 48) or borderline personality disorder (n = 31) and healthy volunteers
(n = 51) completed daily mood ratings using a bespoke smartphone app for up to 1 year. A signature-based learning
method was used to capture the evolving interrelationships between the different elements of mood and exploit this
information to classify participants’ diagnosis and to predict subsequent mood. The three participant groups could be
distinguished from one another on the basis of self-reported mood using the signature methodology. The
methodology classified 75% of participants into the correct diagnostic group compared with 54% using standard
approaches. Subsequent mood ratings were correctly predicted with >70% accuracy. Prediction of mood was most
accurate in healthy volunteers (89–98%) compared to bipolar disorder (82–90%) and borderline personality disorder
(70–78%). The signature method provided an effective approach to the analysis of mood data both in terms of
diagnostic classification and prediction of future mood. It also highlighted the differing predictability and the overlap
inherent within disorders. The three cohorts offered internally consistent but distinct patterns of mood interaction in
their reporting which have the potential to enable more efficient and accurate diagnoses and thus earlier treatment. | en |
dc.description.sponsorship | Supported by the NIHR. | en |
dc.description.uri | https://doi.org/10.1038/s41398-018-0334-0 | |
dc.language.iso | en | en |
dc.subject | Borderline Personality Disorder | en |
dc.subject | Bipolar Disorder | en |
dc.subject | Mobile Apps | en |
dc.title | A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder | en |
dc.type | Article | en |