Show simple item record

dc.contributor.authorExternal author(s) only
dc.date.accessioned2021-05-14T10:16:59Z
dc.date.available2021-05-14T10:16:59Z
dc.date.issued2021-03
dc.identifier.citationAndrew J. Quinn, Vitor Lopes-dos-Santos , David Dupret , Anna Christina Nobre, and Mark W. Woolrich. EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python. Journal of Open Source Software 6(59), 2977. 31 March 2021en
dc.identifier.urihttps://oxfordhealth-nhs.archive.knowledgearc.net/handle/123456789/808
dc.descriptionThis work is licensed under a Creative Commons Attribution 4.0 International License.en
dc.description.abstractThe Empirical Mode Decomposition (EMD) package contains Python (>=3.5) functions for analysis of non-linear and non-stationary oscillatory time series. EMD implements a family of sifting algorithms, instantaneous frequency transformations, power spectrum construction and single-cycle feature analysis. These implementations are supported by online documentation containing a range of practical tutorials.en
dc.description.sponsorshipSupported by the NIHRen
dc.description.urihttps://doi.org/10.21105/joss.02977en
dc.language.isoenen
dc.subjectBrain Activityen
dc.titleEMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Pythonen
dc.typeArticleen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record