Show simple item record

dc.contributor.authorExternal author(s) only
dc.date.accessioned2021-08-12T14:30:17Z
dc.date.available2021-08-12T14:30:17Z
dc.date.issued2021-10
dc.identifier.citationAndrew J. Quinn, Gary G.R. Green, Mark Hymers. Delineating between-subject heterogeneity in alpha networks with Spatio-Spectral Eigenmodes. NeuroImage Volume 240, 15 October 2021, 118330en
dc.identifier.urihttps://oxfordhealth-nhs.archive.knowledgearc.net/handle/123456789/908
dc.descriptionOpen Accessen
dc.description.abstractBetween subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital ’high-frequency alpha’ and parietal ’low-frequency alpha’. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person’s behavioural, cognitive or clinical state.en
dc.description.sponsorshipSupported by the NIHRen
dc.description.urihttps://doi.org/10.1016/j.neuroimage.2021.118330en
dc.language.isoenen
dc.subjectCognitionen
dc.titleDelineating between-subject heterogeneity in alpha networks with Spatio-Spectral Eigenmodesen
dc.typeArticleen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record